Marine Geophysical Researches

, Volume 29, Issue 1, pp 51–69 | Cite as

The Cosmonaut Sea Wedge

  • K. Solli
  • B. Kuvaas
  • Y. Kristoffersen
  • G. Leitchenkov
  • J. Guseva
  • V. Gandjukhin
Original Research Paper


A set of multi-channel seismic profiles (∼15,000 km) is used to study the depositional evolution of the Cosmonaut Sea margin of East Antarctica. We recognize a regional sediment wedge, below the upper parts of the continental rise, herein termed the Cosmonaut Sea Wedge. The wedge is situated stratigraphically below the inferred glaciomarine section and extends for at least 1,200 km along the continental margin with a width that ranges from 80 to about 250 km. The morphology of the wedge and its associated depositional features indicate a complex depositional history, where the deep marine depositional sites were influenced by both downslope and alongslope processes. This interaction resulted in the formation of several proximal depocentres, which at their distal northern end are flanked by elongated mounded drifts and contourite sheets. The internal stratification of the mounded drift deposits indicates that westward flowing bottom currents reworked the marginal deposits. The action of these currents together with sea-level changes is considered to have controlled the growth of the wedge. We interpret the Cosmonaut Sea Wedge as a composite feature comprising several bottom current reworked fan systems. The wide spectrum of depositional geometries in the stratigraphic column reflects dramatic variations in sediment supply from the continental margin as well as varying interaction between downslope and alongslope processes.


Antarctica Cosmonaut Sea Deep-sea deposits Depositional processes Seismics 


  1. Coffin M, Pringle MS, Duncan RA, Gladczenko TP, Storey M, Müller RD, Gahagan L A (2002) Kerguelen hotspot magma output since 130 Ma. J Petrol 43:1121–1139CrossRefGoogle Scholar
  2. DeConto R, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–249CrossRefGoogle Scholar
  3. De Santis L, Brancolini G, Donda F (2003) Seismo-stratigraphic analysis of the Wilkes Land continental margin (East Antarctica): influence of glacially driven processes on the Cenozoic deposition. Deep-Sea Res II 50:1563–1594CrossRefGoogle Scholar
  4. Donda F, Brancolini G, O’Brien PE, De Santis L, Escutia C (2007) Sedimentary processes in the Wilkes Land margin: a record of the Cenozoic East Antarctic Ice sheet evolution. J Geol Soc 164:243–256CrossRefGoogle Scholar
  5. Elverhøi A, Maisey G (1983) Glacial erosion and morphology of the eastern and southeastern Weddell Sea Shelf. In: Oliver RL, James PR, Jago JB (eds) Antarctic earth science. Aust Acad Sci, Canberra, A. C. T, pp 483–487Google Scholar
  6. Ercilla G, Baraza J, Alonso B, Estrada F, Casas D, Farran M (2002) The Ceuta drift, Alboran Sea, southwestern Mediterranean. In: Stow DAV, Howe JA, Faugeres JC, Viana AR (eds) Deep-water contourite systems: modern drifts and ancient series, seismic and sedimentary characteristics, vol 22, Mem Geol Soc, London, pp 155–170Google Scholar
  7. Escutia C, Eittreim SL, Cooper AK, Nelson CH (2000) Morphology and acoustic character of the Antarctic Wilkes Land turbidite systems: ice sheet sourced versus river sourced fans. J Sedimen Res 70(1):84–93CrossRefGoogle Scholar
  8. Escutia C, Nelson CH, Acton GD, Eittreim SL, Cooper AK, Warnke DA, Jaramillo JM (2002) Current controlled deposition on the Wilkes Land continental rise, Antarctica. In: Stow DAV, Howe JA, Faugeres JC, Viana AR (eds) Deep-water contourite systems: modern drifts and ancient series, seismic and sedimentary characteristics, vol 22, Mem Geol Soc, London, pp 373–384Google Scholar
  9. Escutia C, De Santis L, Donda F, Dunbar RB, Cooper AK, Brancolini G, Eittreim SL (2005) Cenozoic ice sheet history from East Antarctic Wilkes Land continental margin sediments. Glob Planet Change 45(1–3):51–81CrossRefGoogle Scholar
  10. Exon NF, Kennett JP, Malone MJ (2004) Leg 189 synthesis: Cretaceous-Holocene history of the Tasmanian gateway. In: Exon NF, Kennett JP, Malone MJ (eds) Proceedings of ODP science results, 189, College station, TX (Ocean Drilling Program), pp 1–37Google Scholar
  11. Faugeres JC, Stow DAV, Imbert P, Viana A (1999) Seismic features diagnostic of contourite drifts. Marine Geol 162:1–38CrossRefGoogle Scholar
  12. Gaina C, Dietmar Müller R, Brown B, Ishihara T (2003) Microcontinent formation around Australia. Geol Soc Ame Spec Pap 372:405–416Google Scholar
  13. Gaina C, Dietmar Müller R, Brown B, Ishihara T, Ivanov S (2007) Breakup and early seafloor spreading between India and Antarctica. Geophys J Int 170:151–169CrossRefGoogle Scholar
  14. Huber BT, Norris RD, MacLeod KG (2002) Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30:123–126CrossRefGoogle Scholar
  15. Kuvaas B, Kristoffersen YK (1991) The Crary Fan––a trough-mouth fan on the Weddell Sea continental margin, Antarctica. Marine Geol 97:345–362CrossRefGoogle Scholar
  16. Kuvaas B, Leitchenkov G (1992) Glaciomarine turbidite and current-controlled deposits in Prydz Bay, Antarctica. Marine Geol 108:365–381CrossRefGoogle Scholar
  17. Kuvaas B, Kristoffersen YK, Guseva J, Leitchenkov G, Gandjukhin V, Løvås O, Sand M, Brekke H (2004) Input of glaciomarine sediments along the East Antarctic continental margin: depositional processes on the Cosmonaut Sea continental slope and rise and a regional acoustic stratigraphic correlation from 40°W to 80°E. Mar Geophys Res 25:247–263CrossRefGoogle Scholar
  18. Kuvaas B, Kristoffersen YK, Guseva J, Leitchenkov G, Løvås O, Sand M, Brekke H (2005) Interplay of turbidite and contourite deposition along the Cosmonaut Sea/Enderby Land margin, East Antarctica. Marine Geol 217:143–159CrossRefGoogle Scholar
  19. Leitchenkov GL, Guseva YB, Gandyukhin VV (2007) Cenozoic environmental changes along the East Antarctic continental margin inferred from regional seismic stratigraphy. In: 10th ISAES online proceedings. U. S. geological survey open––file report 2007–1047. Short research Paper 005Google Scholar
  20. Maldonado A, Barnolas A, Bohoyo F, Escutia C, Galindo-Zaldivar J, Hernandez-Molina FJ, Jabaloy A, Lobo FJ, Nelson CH, Rodriguez-Fernandez J, Somoza L, Vazquez JT (2005) Miocene to recent contourite drifts development in the northern Weddell Sea (Antarctica). Glob Planet Change 45:99–129CrossRefGoogle Scholar
  21. Michels KH, Rogenhagen J, Kuhn G (2001) Recognition of contour current influence in mixed contourite-turbidite sequences of the western Weddell Sea, Antarctica. Mar Geophys Res 22(5–6):465–485CrossRefGoogle Scholar
  22. Michels KH, Kuhn G, Hillenbrand CD, Diekmann B, Futterer DK, Grobe H, Uenzelmann-Neben G (2002) In: Stow DAV, Pudsey CJ, Howe JA, Faugeres JC, Viana AR (eds) Deep water contourite systems: modern drifts and ancient series, seismic and sedimentary characteristics, vol 22, Mem Geol Soc, London, pp 305–323Google Scholar
  23. Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF (2006) The Phanerozoic record of global sea-level change. Science 310:1293–1298CrossRefGoogle Scholar
  24. Miller KG, Sugarman PJ, Browning JV, Kominz MA, Hernandez JC, Olsson RK, Wright JD, Feigenson MD, Van Sickel W (2003) Late Cretaceous chronology of large, rapid sea-level changes: glacioeustasy during the greenhouse world. Geology 31(7):585–588CrossRefGoogle Scholar
  25. Neelov IA, Danilov AI, Klepikov AV, Malek VN (1998) New diagnostic calculations of the Southern Ocean. Antarctica 34:45–51 (In Russian)Google Scholar
  26. Nelson CH, Twichell DC, Schwab WC, Lee H, Kenyon NH (1992) Upper Pleistocene turbidite sand beds and chaotic silt beds in the channelized, distal, outer-fan lobes of the Mississippi Fan. Geology 20:693–696CrossRefGoogle Scholar
  27. O’Brien PE, Stanley S, Parums R (2006) Post-Rift Continental Slope and Rise Sediments from 38°E to 164°E, East Antarctica. In: Fütterer DK, Damaske D, Kleinschmidt G, Miller H, Tessensohn F (eds) Antarctica: contributions to global earth sciences. Springer-Verlag, Berlin, Heidelberg, New York, pp 341–348Google Scholar
  28. Ramana MV, Ramprasad T, Desa M (2001) Seafloor-spreading magnetic anomalies in the Enderby Basin, East Antarctica. Earth Planet Sci Lett 19:241–255CrossRefGoogle Scholar
  29. Rebesco M, Pusey CJ, Canals M, Camerlenghi A, Barker P, Estrada F, Giorgetti A (2002) Sediment drifts and deep-sea channel systems, Antarctic Peninsula Pacific Margin. In: Stow DAV, Howe JA, Faugeres JC, Viana AR (eds) Deep-water contourite systems : modern drifts and ancient series, seismic and sedimentary characteristics, vol 22, Mem Geol Soc, London, pp 353–372Google Scholar
  30. Royer JV, Coffin MF (1992) Jurassic to Eocene plate tectonic reconstructions in the Kerguelen Plateau region. Proc ODP Sci Res 120:917–928Google Scholar
  31. Shipboard Scientific Party (2001) Leg 188 summary: Prydz Bay––Cooperation Sea, Antarctica. In: O’Brien PE, Cooper AK, Richter C et al (eds) Proc ODP, Init Reports, vol, 188, Ocean drilling program, College Station, TX, pp 1–65Google Scholar
  32. Smith WHF, Sandwell DT (1997) Global sea-floor topography from satellite altimetry and ship depth soundings. Science 277:1956–1962CrossRefGoogle Scholar
  33. Solli K, Kuvaas B, Kristoffersen YK, Leitchenkov G, Guseva J, Gandjukhin V (2007) Seismic morphology and distribution of inferred glaciomarine deposits along the East Antarctic continental margin, 20°E – 60°E. Marine Geol 237(3–4):207–223CrossRefGoogle Scholar
  34. Solli K, Kuvaas B, Kristoffersen YK, Leitchenkov G, Guseva J, Gandjukhin V (2007b) A seismo-stratigraphic analysis of glaciomarine deposits in the eastern Riiser-Larsen Sea (Antarctica). Mar Geophys Res 28:43–57CrossRefGoogle Scholar
  35. Stagg HMJ, Colwel JB, Direen NG, O’Brien PE, Bernardel G, Borissova I, Brown BJ, Ishirara T (2004) Geology of the continental margin of Enderby and Mac. Robertson Lands, East Antarctica: Insights form a regional data set. Mar Geophys Res 25:183–218CrossRefGoogle Scholar
  36. Stow DAV, Faugeres JC, Howe JA, Pudsey CJ, Viana AR (2002) Bottom Currents, contourites and deep-sea sediment drifts: current state-of-the-art. In: Stow DAV, Howe JA, Faugeres JC, Viana AR (eds) Deep-water contourite systems: modern drifts and ancient series, seismic and sedimentary characteristics, vol 22, Mem Geol Soc, London, pp 7–20Google Scholar
  37. Truswell EM, Dettmann ME, O’Brien PE (1999) Mesozoic palynofloras from the Mac. Robertson shelf, East Antarctica: geological and phytogeographic implications. Ant Sci 11(2):239–255CrossRefGoogle Scholar
  38. Twichell DC, Schwab WC, Nelson CH, Kenyon NH, Lee HJ (1992) Characteristics of a sandy depositional lobe on the outer Mississippi Fan from SeaMARCIA sidescan sonar images. Geology 20(8):689–692CrossRefGoogle Scholar
  39. Van Wagoner JC, Mitchum RM, Posamentier HW, Vail PR (1987) Part 2: key definitions of sequence stratigraphy. In: Bally AW (ed) Atlas of seismic stratigraphy, volume 1, studies in geology, vol 27, Am Assoc Pet Geol, Tulsa, Oklahoma, pp 11–71Google Scholar
  40. Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • K. Solli
    • 1
  • B. Kuvaas
    • 1
  • Y. Kristoffersen
    • 1
  • G. Leitchenkov
    • 2
  • J. Guseva
    • 3
  • V. Gandjukhin
    • 3
  1. 1.Department of Earth ScienceUniversity of BergenBergenNorway
  2. 2.VNIIOkeangeologiaSt. PetersburgRussia
  3. 3.PMGRELomonosovRussia

Personalised recommendations