Marine Geophysical Researches

, Volume 28, Issue 1, pp 43–57 | Cite as

A seismo-stratigraphic analysis of glaciomarine deposits in the eastern Riiser-Larsen Sea (Antarctica)

  • K. Solli
  • B. Kuvaas
  • Y. Kristoffersen
  • G. Leitchenkov
  • J. Guseva
  • V. Gandjukhin
Original Paper


Multichannel seismic data from the eastern parts of the Riiser-Larsen Sea have been analyzed with a sequence stratigraphic approach. The data set covers a wide bathymetric range from the lower continental slope to the abyssal plain. Four different sequences (termed RLS-A to RLS-D, from deepest to shallowest) are recognized within the sedimentary section. The RLS-A sequence encompasses the inferred pre-glacial part of the deposits. Initial phases of ice sheet arrival at the eastern Riiser-Larsen Sea margin resulted in the deposition of multiple debris flow units and/or slumps on the upper part of the continental rise (RLS-B). The nature and distribution of these deposits indicate sediment supply from a line or a multi-point source. The subsequent stage of downslope sediment transport activity was dominated by turbidity currents, depositing mainly as distal turbidite sheets on the lower rise/abyssal plain (RLS-C). We attribute this to margin progradation and/or a more focussed sediment delivery to the continental shelf edge. As the accommodation space on the lower rise/abyssal plain declined and the base level was raised, the turbidite channels started to backstep and develop large channel–levee complexes on the upper parts of the continental rise (RLS-D). The deposition of various drift deposits on the lower rise/abyssal plain and along the western margin of the Gunnerus Ridge indicates that the RLS-D sequence is also associated with increased activity of contour currents. The drift deposits overlie a distinct regional unconformity which is considered to reflect a major paleoceanographic event, probably related to a Middle Miocene intensification of the Antarctic Circumpolar Current.


Antarctica Debris flows Deep-sea deposits Riiser-Larsen Sea Seismics Turbidites 



This contribution is part of a joint research project between the University of Bergen and PMGRE/VNIIOkeangeologia in St. Petersburg. Project support was provided by the Norwegian Petroleum Directorate (NPD). We thank Morten Sand, Harald Brekke and Olvar Løvås of NPD for their support and encouragement during the project.


  1. Abreu V, Sullivan M, Pirmez C, Mohrig D (2003) Lateral accretion packages (LAPs): an important reservoir element in deep water sinuous channels. Mar Petrol Geol 20:631–648CrossRefGoogle Scholar
  2. Andreassen K, Mienert J, Bryn P, Singh S (2000) A double gas-hydrate related bottom simulating reflector at the Norwegian continental margin: indication of gas fractionation? Ann. NY Acad Sci 912:126–135CrossRefGoogle Scholar
  3. Andreassen K, Berteussen KA, Sognnes H, Henneberg K, Langhammer J, Mienert J (2003) Multicomponent ocean bottom cable data in gas hydrate investigation offshore of Norway. J Geophys Res 108 (B8), 2399 (doi: 10.1029/2002JB002245)Google Scholar
  4. Bamber JL, Vaughan DG, Joughin I (2000) Widespread complex flow in the interior of the Antarctic ice sheet. Science 287:1248–1250CrossRefGoogle Scholar
  5. Barker PF, Barrett PJ, Camerlenghi A, Cooper AK, Davey FJ, Domack EW, Escutia C, Kristoffersen Y, O’Brien PE (1998) Ice sheet history from Antarctic continental margin sediments: the antostrat approach. Terra Antarctica 5:737–760Google Scholar
  6. Barker PF (2001) Scotia Sea regional tectonic evolution: implications for mantle flow and paleocirculation. Earth-Sci Rev 55:1–39CrossRefGoogle Scholar
  7. Barrett PJ (1996) Antarctic palaeoenvironments through Cenozoic times—a review. Terra Antarctica 3:103–119Google Scholar
  8. Barrett P (2003) Cooling a continent. Nature 421:221–223CrossRefGoogle Scholar
  9. Bentley CR, Giovinetto MB (1991) Mass balance of Antarctica and sea level change. In: Proc. Int. Confer. The role of the polar regions in global change. The University of Alaska, Fairbanks, pp 481–488Google Scholar
  10. Camerlenghi A, Crise A, Pudsey CJ, Accerboni E, Laterza R, Rebesco M (1997) Ten month observation of the bottom current regime across a sediment drift of the Pacific margin of the Antarctic Peninsula. Antarctic Sci 9:424–431Google Scholar
  11. Carmack EC (1990) Large scale physical oceanography of the polar ocean. In: Smith WO Jr (eds) Polar oceanography. Academic Press, LondonGoogle Scholar
  12. Cooper AK, O’Brien PE (2004) Prydz Bay-Cooperation Sea, Antarctica: glacial history and paleoceanography, sites 1165–1167. Proc ODP Sci Results 188:1–42Google Scholar
  13. DeConto R, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–249CrossRefGoogle Scholar
  14. DeSantis L, Brancolini G, Donda F (2003) Seismo-stratigraphic analysis of the Wilkes Land continental margin (East Antarctica): influence of glacially driven processes on the Cenozoic deposition. Deep Sea Res II 50:1563–1594CrossRefGoogle Scholar
  15. Eittreim SL, Cooper AK, Wanneson J (1995) Seismic stratigraphic evidence of ice-sheet advances on the Wilkes Land margin of Antarctica. Sediment Geol 96:131–156CrossRefGoogle Scholar
  16. Escutia C, DeSantis L, Donda F, Dunbar RB, Cooper AK, Brancolini G, Eittreim SL (2005) Cenozoic ice sheet history from East Antarctic Wilkes Land continental margin sediments. Global Planetary Change 45, Issues 1–3:51–81Google Scholar
  17. Faugeres JC, Stow DAV, Imbert P, Viana A (1999) Seismic features diagnostic of contourite drifts. Mar Geol 162:1–38CrossRefGoogle Scholar
  18. Flower BP, Kennett JP (1994) The middle Miocene climatic transition: East Antarctic ice Sheet development, deep ocean circulation, and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol 108:537–555CrossRefGoogle Scholar
  19. Foldvik A, Gammelsrød T (1988) Notes on Southern Ocean hydrography, sea ice and bottom-water formation. Palaeogeogr Palaeoclimatol Palaeoecol 67:3–17CrossRefGoogle Scholar
  20. Gill AE (1973) Circulation and bottom water formation in the Weddell Sea. Deep-Sea Res 20:111–140Google Scholar
  21. Grauls D (2001) Gas hydrates: importance and applications in petroleum exploration. Mar Petrol Geol 18(4):519–523CrossRefGoogle Scholar
  22. Grützner J, Hillenbrand CD, Rebesco M (2005) Terrigenous flux and biogenic silica deposition at the Antarctic continental margin rise during the late Miocene to early Pliocene: implications for ice sheet stability and sea ice coverage. Global Planetary Change 45:131–149CrossRefGoogle Scholar
  23. Hambrey MJ, McKelvey B (2000) Neogene fluctuations of the East Antarctic Ice sheet: stratigraphic evidence from the Lambert Glacier region. Geology 108:887–890CrossRefGoogle Scholar
  24. Hammon RD, Gaither JR (1983) Anomalous seismic character-Bering Sea Shelf. Geophysics 48:590–605CrossRefGoogle Scholar
  25. Hillenbrand CD, Ehrmann W (2003) Palaeoenvironmental implications of Tertiary sediments from Kainan Maru Seamount and northern Gunnerus Ridge. Antarctic Sci 15(4):522–536CrossRefGoogle Scholar
  26. Huybrechts P (1993) Glaciological modelling of the Late Cenozoic East Antarctic ice sheet: stability or dynamism. Geogr Ann 75A:221–238CrossRefGoogle Scholar
  27. Kuvaas B, Kristoffersen Y (1991) The Crary fan: a trough-mouth fan on the Weddell sea continental margin, Antarctica. Mar Geol 97:345–362CrossRefGoogle Scholar
  28. Kuvaas B, Leitchenkov G (1992) Glaciomarine turbidite and current-controlled deposits in Prydz Bay, Antarctica. Mar Geol 108:365–381CrossRefGoogle Scholar
  29. Kuvaas B, Kristoffersen YK, Leitchenkov G, Guseva J, Gandjukhin V (2004a) Seismic expression of glaciomarine deposits in the eastern Riiser-Larsen Sea, Antarctica. Mar Geol 207:1–15CrossRefGoogle Scholar
  30. Kuvaas B, Kristoffersen YK, Guseva J, Leitchenkov G, Gandjukhin V, Løvås O, Sand M, Brekke H (2004b) Input of glaciomarine sediments along the East Antarctic continental margin: depositional processes on the Cosmonaut Sea continental slope and rise and a regional acoustic stratigraphic correlation from 40°W to 80°E. Mar Geophys Res 25:247–263CrossRefGoogle Scholar
  31. Lawver LA, Gahagan LM (1998) Opening of Drake Passage and its impact on Cenozoic ocean Circulation. In: Crowley TJ, Burke KC (eds) Tectonic boundary conditions for climate reconstructions. Oxford University Press, Oxford, pp 212–223Google Scholar
  32. Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Paleogeogr Palaeoclim Palaeoecol 198:11–37CrossRefGoogle Scholar
  33. Macphail MK, Truswell EM (2004) Palynology of Neogene slope and rise deposits from ODP sites 1165 and 1167, East Antarctica. Proc ODP Sci Results 188:1–20Google Scholar
  34. Maldonado A, Barnolas A, Bohoyo F, Galindo-Zaldivar J, Hernandez-Molina J, Lobo F, Rodriguez-Fernandez J, Somoza L, Vasquez JT (2003) Contourite deposits in the central Scotia Sea: the importance of the Antarctic Circumpolar Current and the Weddell Gyre flows. Palaeogeogr Palaeoclimatol Palaeoecol 198, issues 1–2:187–221Google Scholar
  35. Maldonado A, Barnolas A, Bohoyo F, Escutia C, Galindo-Zaldivar J, Hernandez-Molina FJ, Jabaloy A, Lobo FJ, Nelson CH, Rodriguez-Fernandez J, Somoza L, Vazquez JT (2005) Miocene to recent contourite drifts development in the northern Weddell Sea (Antarctica) Global Planet Change 45:99–129CrossRefGoogle Scholar
  36. Maldonado A, Bohoyo F, Escutia C, Galindo-Zaldivar J, Hernandez-Molina FJ, Jabaloy A, Lobo FJ, Rodriguez-Fernandez J, Surinach E, Vazquez JT (2006) Ocean basins near the Scotia–Antarctic plate boundary: influence of tectonics and paleoceanography on the Cenozoic deposits. Mar Geophys Res 27:83–107CrossRefGoogle Scholar
  37. Marks KM, Tikku AA (2001) Cretaceous reconstruction of East Antarctica, Africa and Madagascar. Earth Planetary Sci Lett 186:479–495CrossRefGoogle Scholar
  38. Melles M, Kuhn G (1993) Sub-bottom profiling and sedimentological studies in the southern Weddell Sea, Antarctica: evidence for large scale erosional/depositional processes. Deep Sea Res 40(4):739–760CrossRefGoogle Scholar
  39. Michels KH, Rogenhagen J, Kuhn G (2001) Recognition of contour current influence in mixed contourite-turbidite sequences of the western Weddell Sea, Antarctica. Mar Geophys Res 22(5–6):465–485CrossRefGoogle Scholar
  40. Michels KH, Kuhn G, Hillenbrand CD, Diekmann B, Futterer DK, Grobe H, Uenzelmann-Neben G (2002) In: Stow DAV, Pudsey CJ, Howe JA, Faugeres JC, Viana AR (eds) Deep water contourite systems: modern drifts and ancient series, seismic and sedimentary characteristics. Mem Geol Soc London 22:305–323Google Scholar
  41. Miller H, Henriet JP, Kaul N, Moons A (1990) A fine-scale seismic stratigraphy of the eastern margin of the Weddell Sea. In: Bleil U, Thiede J (eds) Geological history of the polar oceans; Arctic vs. Antarctic. NATO/ASI Series C. Kluwer Academic Press, Dordrecht, Netherlands, pp 131–161Google Scholar
  42. Neelov IA, Danilov AI, Klepikov AV, Malek VN (1998) New diagnostic calculations of the Southern Ocean. Antarctica 34:45–51 (In Russian)Google Scholar
  43. Nelson CH, Twichell DC, Schwab WC, Lee HJ, Kenyon NH (1992) Upper Pleistocene turbidite sand beds and chaotic silt beds in the channelized, distal, outer-fan lobes of the Mississippi Fan. Geology 20:693–696CrossRefGoogle Scholar
  44. Reading HG, Richards M (1994) Turbidite systems in deep-water basin margins classified by grain size and feeder system. Am Assoc Petrol Geol Bull 78:792–822Google Scholar
  45. Rebesco M, Larter RD, Barker PF, Camerlenghi A, Vanneste LE (1997) History of sedimentation on the continental rise west of the Antarctic Peninsula. In: Cooper AK, Barker PF (eds) Geology and seismic stratigraphy of the Antarctic Margin. Antarctic Res Ser 71:29–49Google Scholar
  46. Rebesco M, Camerlenghi A, Geletti R, Canals M (2006) Margin architecture reveals the transition to the modern Antarctic ice sheet ca. 3 Ma Geology 34(4):301–304CrossRefGoogle Scholar
  47. Roeser AR (1996) The development of the crust off Dronning Maud Land, East Antarctica. In: Storey BC, King EC, Livermore RA (eds) Weddell sea tectonics and Gondwana break-up. Geol Soc London Spec Publ 108:243–264Google Scholar
  48. Shipboard Scientific Party (2001) Leg 188 summary: Prydz Bay-cooperation Sea, Antarctica. In: O’Brien PE, Cooper AK, Richter C et al (eds) Proc ODP Init Repts, vol 188. Ocean Drilling Program, College Station, TX, pp 1–65Google Scholar
  49. Solheim A, Forsberg CF, Pittenger A (1991) Stepwise consolidation of glacigenic sediments related to the glacial history of Prydz Bay, East Antarctica. In: Barron J, Larsen B (eds) Proceedings of the Ocean Drilling Program. Scientific Results 119:169–182Google Scholar
  50. Stow DAV, Faugeres JC, Howe JA, Pudsey CJ, Viana AR (2002) Bottom currents, contourites and deep-sea sediment drifts: current state-of-the-art. In: Stow DAV, Howe JA, Faugeres JC, Viana AR (eds) Deep-water contourite systems: modern drifts and ancient series, seismic and sedimentary characteristics. Mem Geol Soc London 22:7–20Google Scholar
  51. Twichell DC, Schwab WC, Nelson CH, Kenyon NH, Lee HJ (1992) Characteristics of a sandy depositional lobe on the outer Mississippi Fan from SeaMARCIA sidescan sonar images. Geology 20(8):689–692CrossRefGoogle Scholar
  52. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  • K. Solli
    • 1
  • B. Kuvaas
    • 1
  • Y. Kristoffersen
    • 1
  • G. Leitchenkov
    • 2
  • J. Guseva
    • 3
  • V. Gandjukhin
    • 3
  1. 1.Department of Earth ScienceUniversity of BergenBergenNorway
  2. 2.VNIIOkeangeologiaSt. PetersburgRussia
  3. 3.PMGRELomonosovRussia

Personalised recommendations