Marine Geophysical Researches

, Volume 27, Issue 2, pp 83–107 | Cite as

Ocean basins near the Scotia–Antarctic plate boundary: Influence of tectonics and paleoceanography on the Cenozoic deposits

  • A. Maldonado
  • F. Bohoyo
  • J. Galindo-Zaldívar
  • J. Hernández-Molina
  • A. Jabaloy
  • F. J. Lobo
  • J. Rodríguez-Fernández
  • E. Suriñach
  • J. T. Vázquez
Original Paper


The distribution of seismic units in deposits of the basins near the Antarctic–Scotia plate boundary is described based on the analysis of multichannel seismic reflection profiles. Five main seismic units are identified. The units are bounded by high-amplitude continuous reflectors, named a to d from top to bottom. The two older units are of different age and seismic facies in each basin and were generally deposited during active rifting and seafloor spreading. The three youngest units (3 to 1) exhibit, in contrast, rather similar seismic facies and can be correlated at a regional scale. The deposits are types of contourite drift that resulted from the interplay between the northeastward flow of Weddell Sea Bottom Water (WSBW) and the complex bathymetry in the northern Weddell Sea, and from the influence of the Antarctic Circumpolar Current and the WSBW in the Scotia Sea. A major paleoceanographic event was recorded by Reflector c, during the Middle Miocene, which represents the connection between the Scotia Sea and the Weddell Sea after the opening of Jane Basin. Unit 3 (tentatively dated ∼Middle to Late Miocene) shows the initial incursions of the WSBW into the Scotia Sea, which influenced a northward progradational pattern, in contrast to the underlying deposits. The age attributed to Reflector b is coincident with the end of spreading at the West Scotia Ridge (∼6.4 Ma). Unit 2 (dated ∼Late Miocene to Early Pliocene) includes abundant high-energy, sheeted deposits in the northern Weddell Sea, which may reflect a higher production of WSBW as a result of the advance of the West Antarctic ice-sheet onto the continental shelf. Reflector a represents the last major regional paleoceanographic change. The timing of this event (∼3.5–3.8 Ma) coincides with the end of spreading at the Phoenix–Antarctic Ridge, but may be also correlated with global events such as initiation of the permanent Northern Hemisphere ice-sheet and a major sea level drop. Unit 1 (dated ∼Late Pliocene to Recent) is characterized by abundant chaotic, high-energy sheeted deposits, in addition to a variety of contourites, which suggest intensified deep-water production. Units 1 and 2 show, in addition, a cyclic pattern, more abundant wavy deposits and the development of internal unconformities, all of which attest to alternating periods of increased bottom current energy.


Ocean basin development Seismic stratigraphy Contourite drifts Antarctic palaeoceanography Antarctic Circumpolar Current Weddell Gyre 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the Commander, officers and crew of the BIO HESPERIDES for their support in obtaining these data, sometimes under severe sea conditions. The diligence and expertise of engineers E. Litcheva and J. Maldonado who processed the MCS data and swath bathymetry is appreciated. We thank A. Caballero for his help in preparing the figures. We are also indebted to Prof. Peter Clift and two anonymous reviewers that significantly improved the original manuscript. This work is a contribution to the IGCP-432 project: “Contourites, Bottom Currents and Paleocirculations” and to the IPY 2007–2008 project: “Polar Ocean Gateways: The keys to understanding long-term global change”. Spanish Comisión Interministerial de Ciencia y Tecnología (CYCIT) supported this research through Projects REN2001-2143/ANT and CGL2004-05646.


  1. Acosta J, Uchupi E (1996) Transtensional tectonics along the South Scotia Ridge, Antarctica. Tectonophys 267:31–56CrossRefGoogle Scholar
  2. Aldaya F, Maldonado A (1996) Tectonics of the tripe junction at the southern end of the Shackleton Fracture Zone (Antarctic Peninsula). Geo-Mar Lett 16:279–286CrossRefGoogle Scholar
  3. Anderson JB, Shipp SS (2001) Evolution of the West Antarctic ice-sheet. In: Alley RB, Bindschadler RA (eds) The West Antarctic ice sheet: behavior and environment. AGU Antarct. Res. Ser. 77, pp 45–58Google Scholar
  4. Balanyá JC, Galindo-Zaldívar J, Jabaloy A, Leitchenkov G, Maldonado A, Rodríguez-Fernández J, Vinnikovskaya O (1999) Structure of the South Powell Ridge (NE Antarctic Peninsula): new clues for changing tectonic regimes near the Scotia/Antarctic plate boundary. Geo-Mar Lett 18:215–224CrossRefGoogle Scholar
  5. Barker PF (2001) Scotia Sea regional tectonic evolution: implications for mantle flow and palaeocirculation. Earth-Sci Rev 55:1–39CrossRefGoogle Scholar
  6. Barker PF, Burrell J (1977) The opening of Drake Passage. Mar Geol 25:15–34CrossRefGoogle Scholar
  7. Barker PF, Thomas E (2004) Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth-Sci Rev 66:143–162CrossRefGoogle Scholar
  8. Barker PF, Kennett JP and the Shipboard Scientific Party (1988) Proc. ODP, Initial Repts. 113, College Station, Texas, 785 ppGoogle Scholar
  9. BAS (1985) Tectonic map of Scotia Arc, sheet (misc) 3, scale 1:3 000 000. British Antarctic Survey, CambridgeGoogle Scholar
  10. Bohoyo F (2004) Fragmentación continental y desarrollo de cuencas oceánicas en el sector meridional del Arco de Scotia, Antártida. Ph. D Thesis, University of Granada, Granada, 252 ppGoogle Scholar
  11. Bohoyo F, Galíndo-Zaldívar J, Maldonado A, Schreider AA, Suriñach E (2002) Basin development subsequent to ridge-trench collision: the Jane Basin, Antarctica. Mar Geophys Res 23:413–421CrossRefGoogle Scholar
  12. Busetti M, Zanolla M, Marchetti A (2000) Geological structure of the South Orkney microcontinent. Terra Antarctica 8:1–8Google Scholar
  13. Cande SC, Kent DL (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J Geophys Res 100:6093–6095CrossRefGoogle Scholar
  14. Coates AG, Jackson JBC, Collins LS, Cronin TM, Dowsett HJ, Bbell LM, Jung P, Obando JA (1992) Closure of the Isthmus of Panama: the near-shore marine record of Costa Rica and western Panama. Geol Soc Am Bull 104:813–829CrossRefGoogle Scholar
  15. Coren F, Geccone G, Lodolo E, Zanolla C, Zitellini N, Bonazzi C, Centonze J (1997) Morphology, seismic structure and tectonic development of the Powell Basin, Antarctica. J Geol Soc 154:849–862CrossRefGoogle Scholar
  16. DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–249CrossRefGoogle Scholar
  17. Dingle RV, Lavelle M (1998) Late Cretaceous-Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeogr Palaeoclim Palaeoecol 141:215–232CrossRefGoogle Scholar
  18. Driscoll NW, Haug GH (1998) A short circuit in thermohaline circulation; a cause for Northern Hemisphere glaciation? Science 282:436–438CrossRefGoogle Scholar
  19. Eagles G, Livermore R (2002) Opening history of Powell Basin, Antarctic Peninsula. Mar Geol 185:195–205CrossRefGoogle Scholar
  20. Faugères JC, Stow DAW, Imbert P, Viana A (1999) Seismic features diagnostic of contourite drifts. Mar Geol 162:1–38CrossRefGoogle Scholar
  21. Flores-Márquez L, Suriñach E, Galindo-Zaldívar J, Maldonado A (2003) Three-dimensional gravity inversion model of the deep crustal structure of the central Drake Passage (Shackleton Fracture Zone and West Scotia Ridge, Antarctica). J Geophys Res-Solid Earth 108: 2445, doi: 10.1029/2002JB001934CrossRefGoogle Scholar
  22. Foldvik A, Gammelrsød T (1988) Notes on Southern Ocean hydrography, sea-ice and bottom water formation. Palaeogeogr Palaeoclim Palaeoecol 67:3–17CrossRefGoogle Scholar
  23. Galindo-Zaldívar J, Jabaloy A, Maldonado A, Sanz de Galdeano C (1996) Continental fragmentation along the South Scotia Ridge transcurrent plate boundary (NE Antarctic Peninsula). Tectonophys 242:275–301CrossRefGoogle Scholar
  24. Galindo-Zaldívar J, Jabaloy A, Maldonado A, Martínez-Martínez JM, Sanz de Galdeano CS, Somoza L, Suriñach E (2000) Deep crustal structure of the area of intersection between the Shackleton Fracture Zone and the West Scotia Ridge (Drake Passage, Antarctica). Tectonophys 320:123–139CrossRefGoogle Scholar
  25. Galindo-Zaldívar J, Balanyá JC, Bohoyo F, Jabaloy A, Maldonado A, Martínez-Martínez JM, Rodríguez-Fernández J, Suriñach E (2002) Active crustal fragmentation along the Scotia-Antarctic plate boundary east of the South Orkney Microcontinent (Antarctica). Earth Planet Sci Lett 204:33–46CrossRefGoogle Scholar
  26. Galindo-Zaldívar J, Bohoyo F, Maldonado A, Schreider A, Suriñach E, Vazquez T (2006) Propagating rift during the opening of a small oceanic basin: the Protector Basin (Scotia Arc, Antarctica). Earth Planet Sci Lett 241:398–412CrossRefGoogle Scholar
  27. Ghidella ME, Yáñez G, LaBrecque JL (2002) Revised tectonic implications for the magnetic anomalies of the western Weddell Sea. Tectonophys 347:65–86CrossRefGoogle Scholar
  28. Golinsky AV, Morris P, Kovacs LC, Ferris JK (2002) A new magnetic map of the Weddell Sea and the Antarctic Peninsula. Tectonophys 347:3–11CrossRefGoogle Scholar
  29. Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167CrossRefGoogle Scholar
  30. Hardenbol J, Thierry J, Farley MB, Jacquin T, de Graciansky P-C, Vail PR (1998) Mesozoic and Cenozoic sequence chronostratigraphic chart (Chart 1). In: de Graciansky P-C, Hardenbol J, Jacquin T, Vail PR (Eds) Mesozoic and Cenozoic sequence stratigraphy of European Basins. SEPM Spec. Publ. 60, 786 ppGoogle Scholar
  31. Howe JA, Livermore RA, Maldonado A (1998) Mudwave activity and current-controlled sedimentation in the Powell Basin, northern Weddell Sea, Antarctica. Mar Geol 149:229–241CrossRefGoogle Scholar
  32. Kavoun M, Vinnikovskaya O (1994) Seismic stratigraphy and tectonics of the northwestern Weddell Sea (Antarctica) inferred from marine geophysical surveys. Tectonophys 240:299–341CrossRefGoogle Scholar
  33. Keigwin LD (1982) Isotopic paleoceanography of the Caribbean and East Pacific: role of Panama uplift in late Neogene time. Science 217:350–353CrossRefGoogle Scholar
  34. Kennett JP (1977) Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography. J Geophys Res 82:3843–3859Google Scholar
  35. Kim Y, Jin YK, Nam SH (1997) Crustal structure of the Shackleton Fracture Zone in the southern Drake Passage, Antarctica. In: Ricci CA (Ed) The Antarctic region: geological evolution and processes. Terra Antarctica Pub., pp 661–667Google Scholar
  36. King EC, Barker PF (1988) The margins of the South Orkney microcontinent. J Geol Soc 145:317–331Google Scholar
  37. King E, Leitchenkov G, Galindo-Zaldívar J, Maldonado A, Lodolo E (1997) Crustal structure and sedimentation in Powell Basin. In: Barker PF, Cooper A (Eds) Geology and seismic stratigraphy of the Antarctic margin. Part 2. American Geophysical Union, Washington D.C., 75–93Google Scholar
  38. Klepeis KA, Lawver LA (1996) Tectonics of the Antarctic-Scotia plate boundary near Elephant and Clarence Islands, West Antarctica. J Geophys Res 101:20211–20231CrossRefGoogle Scholar
  39. Kovacs LC, Morris P, Brozena J, Tikku A (2002) Seafloor spreading in the Weddell Sea from magnetic and gravity data. Tectonophys 347:43–64CrossRefGoogle Scholar
  40. LaBrecque JL, Ghidella ME (1997) Bathymetry, depth to magnetic basement and sediment thickness estimates from aerogeophysical data over the western Weddell Basin. J Geophys Res 102:7929–7945CrossRefGoogle Scholar
  41. Lawver LA, Gahagan LM (1998) Opening of Drake Passage and its impact on Cenozoic ocean circulation. In Crowley TJ, Burke KC (Eds) Tectonic boundary conditions for climate reconstructions. Oxford University Press, Oxford, pp 212–223Google Scholar
  42. Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr Palaeoclim Palaeoecol 198:11–37CrossRefGoogle Scholar
  43. Lawver LA, Gahagan LM, Coffin MF (1992) The development of paleogateways around Antarctica. In: Kennett JP, Warnke DA (Eds) The Antarctic paleoenvironment: a perspective on global change. AGU Antarctic Research Series 56, pp 7–30Google Scholar
  44. Livermore RA, Hunter RJ (1996) Mesozoic seafloor spreading in the southern Weddell Sea. In Storey BC, King E, Livermore RA (Eds) Weddell Sea tectonics and Gondwana break-up. Geol. Soc., London, Spec. Publ. 108, pp 227–241Google Scholar
  45. Livermore RA, Woollett RW (1993) Seafloor spreading in the Weddell Sea and southwest Atlantic since the Late Cretaceous. Earth Planet Sci Lett 117:475–495CrossRefGoogle Scholar
  46. Livermore R, McAdoo D, Marks K (1994) Scotia Sea tectonics from high-resolution satellite gravity. Earth Planet Sci Lett 123:255–268CrossRefGoogle Scholar
  47. Livermore RA, Balanyá JC, Maldonado A, Martínez JM, Rodríguez-Fernández J, Sanz de Galdeano C, Galindo-Zaldívar J, Jabaloy A, Barnolas A, Somoza L, Hernández J, Suriñach E, Viseras C (2000) Autopsy on a dead spreading centre: the Phoenix Ridge, Drake Passage, Antarctica. Geology 18:607–610CrossRefGoogle Scholar
  48. Livermore R, Eagles G, Morris P, Maldonado A (2004) Shackleton Fracture Zone: no barrier to early circumpolar ocean circulation. Geology 32:797–800CrossRefGoogle Scholar
  49. Lodolo E, Coren F, Schreider AA, Ceccone G (1997) Geophysical evidence of a relict oceanic crust in the South-western Scotia Sea. Mar Geophys Res 19:439–450CrossRefGoogle Scholar
  50. Maldonado A, Zitellini N, Leitchenkov G, Balanyá JC, Coren F, Galindo-Zaldívar J, Lodolo E, Jabaloy A, Zanolla C, Rodríguez-Fernández J, Vinnikovskaya O (1998) Small ocean basin development along the Scotia-Antarctica plate boundary and in the northern Weddell Sea. Tectonophys 296:371–402CrossRefGoogle Scholar
  51. Maldonado A, Balanyá JC, Barnolas A, Galindo-Zaldívar J, Hernández J, Jabaloy A, Livermore R, Martínez-Martínez JM, Rodríguez-Fernández J, Sanz de Galdeano C, Somoza L, Suriñach E, Viseras C (2000) Tectonics of an extinct ridge-transform intersection, Drake Passage (Antarctica). Mar Geophys Res 21:43–68CrossRefGoogle Scholar
  52. Maldonado A, Barnolas A, Bohoyo F, Galindo-Zaldívar J, Hernández-Molina J, Lobo F, Rodríguez-Fernández J, Somoza L, Vázquez JT (2003) Contourite deposits in the central Scotia Sea: the importance of the Antarctic circumpolar current and the Weddell Gyre flows. Palaeogeogr Palaeoclim Palaeoecol 198:187–221CrossRefGoogle Scholar
  53. Maldonado A, Barnolas A, Bohoyo F, Escutia C, Galindo-Zaldívar J, Hernández-Molina FJ, Jabaloy A, Lobo FJ, Nelson CH, Rodríguez-Fernández J, Somoza L, Vázquez JT (2005) Miocene to recent contourite drifts development in the northern Weddell Sea (Antarctica). Global Planet Change 45:99–129CrossRefGoogle Scholar
  54. Maldonado A, Barnolas A, Bohoyo F, Escutia C, Galindo-Zaldívar J, Hernández-Molina J, Jabaloy A, Lobo F, Nelson H C, Rodríguez-Fernández J, Somoza L, Suriñach E, Vázquez JT (2006) Seismic stratigraphy of Miocene to recent sedimentary deposits in the central Scotia Sea and northern Weddell Sea (Antarctica): influence of bottom flows. In: Fütterer DK, Damaske D, Kleinschmidt G, Miller H, Tessensohn F (Eds) Antarctica: contributions to global earth sciences. Springer-Verlag, Berlin, pp 441–446Google Scholar
  55. Michels KH, Khun G, Hillenbrand CD, Diekmann B, Fütterer DK, Grobe H, Uenzelmann-Neben G (2002) The southern Weddell Sea: combined contourite–turbidite sedimentation at southeastern margin of the Weddell Gyre. In: Stow DAV, Pudsey CJ, Howe JA, Faugères JC, Viana AR (Eds) Deep water contourite systems: modern drifts and ancient series, seismic and sedimentary characteristics. Mem. Geol. Soc. London 22, pp 305–323Google Scholar
  56. Naveira-Garabato AC, Heywood KJ, Stevens DP (2002) Modification and pathways of Southern Ocean deep waters in the Scotia Sea. Deep-Sea Res. I 49:681–705CrossRefGoogle Scholar
  57. Nowlin WD Jr, Klinck JM (1986) The physics of the Antarctic circumpolar current. Rev Geophys 24:469–491Google Scholar
  58. Parsons BL, Sclater JG (1977) An analysis of the variation of ocean floor bathymetry and heat flow with age. J Geophys Res 82:803–827CrossRefGoogle Scholar
  59. Pearce JA, Leat PT, Barker PF, Millar IL (2001) Geochemical tracing of Pacific-to-Atlantic upper-mantle flow through Drake Passage. Nature 410:457–461CrossRefGoogle Scholar
  60. Pelayo AM, Wiens DA (1989) Seismotectonics and relative plate motions in the Scotia Sea Region. J Geophys Res 94:7293–7320Google Scholar
  61. Rebesco M, Stow DAV (2001) Seismic expression of contourites and related deposits: a preface. Mar Geophys Res 22:303–308CrossRefGoogle Scholar
  62. Rodríguez-Fernández J, Balanya JC, Galindo-Zaldívar J, Maldonado A (1997) Tectonic evolution and growth patterns of a restricted ocean basin: the Powell Basin (northeastern Antarctic Peninsula). Geodin Acta 10:159–174Google Scholar
  63. Rogenhagen J, Jokat W (2000) The sedimentary structure in the western Weddell Sea. Mar Geol 168:5–60CrossRefGoogle Scholar
  64. Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS-1 satellite altimetry. J Geophys Res 102:10039–10054CrossRefGoogle Scholar
  65. Sijp WP, England MH (2004) Effect of the Drake Passage throughflow on global climate. J Phys Oceanogr 34:1254–1266CrossRefGoogle Scholar
  66. Viseras C, Maldonado A (1999) Facies architecture, seismic stratigraphy and development of a high-latitude basin: the Powell Basin (Antarctica). Mar Geol 157:69–87CrossRefGoogle Scholar
  67. Wright JD, Miller KG (1992) Miocene stable isotope stratigraphy, site 747, Kerguelen Plateau. In: Wise SW, Schlich R (Eds) Proc. ocean drill program, sci. results. Leg 120, College Station, Texas, pp 855–866Google Scholar
  68. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • A. Maldonado
    • 1
  • F. Bohoyo
    • 1
  • J. Galindo-Zaldívar
    • 2
  • J. Hernández-Molina
    • 3
  • A. Jabaloy
    • 2
  • F. J. Lobo
    • 1
  • J. Rodríguez-Fernández
    • 1
  • E. Suriñach
    • 4
  • J. T. Vázquez
    • 5
  1. 1.Instituto Andaluz Ciencias de la TierraCSIC/Universidad GranadaGranadaSpain
  2. 2.Departamento de GeodinámicaUniversidad de GranadaGranadaSpain
  3. 3.Facultad de Ciencias del Mar, Departamento de Geociencias Marinas Universidad de VigoVigoSpain
  4. 4.Departament de Geodinàmica i GeofísicaUniversitat de BarcelonaBarcelonaSpain
  5. 5.Facultad de Ciencias del MarUniversidad de CádizPuerto RealSpain

Personalised recommendations