Marine Geophysical Researches

, Volume 26, Issue 2–4, pp 317–328 | Cite as

High Resolution Electrical Resistivity Tomography (ERT) in a Transition Zone Environment: Application for Detailed Internal Architecture and Infilling Processes Study of a Rhône River Paleo-channel

  • Grégoire M. Maillet
  • Enzo Rizzo
  • André Revil
  • Claude Vella
Article

Abstract

Electrical Resistivity Tomography (ERT) was applied in a sand-infilled paleo-channel located in the Rhône Delta, in Southern France. The detailed pattern and sedimentological evolution of the channel fill deposits – know from both historical and geological sources – made it the ideal site to test the ERT method. A geoelectrical survey was performed, using the ABEM SAS-4000 multi-electrode array system in March 2003. Very low electrical resistivity values were obtained, ranging from 0.3 to 10 Ohm m, consistent with the high salinity measured in situ (the pore water conductivity was found to range from 0.9 to 1.2 S/m at 25 °C). The electrical resistivity profiles reflect mainly salinity variations. Indeed, in this case, salinity is so high that surface conductivity associated with clay minerals can be safely neglected. ERT provided valuable high-resolution information that complemented other exiting data such as historical information, bathymetric, geological, and lithostratigraphic data, which allowed the architecture of the channel to be defined. The ERT was used to determine the infilling dynamics of the Pégoulier Channel, which opens new perspectives in terms of paleoenvironmental reconstruction and paleodynamic studies.

Key words:

channel infilling electrical resistivity mouth evolution model Rhône Delta 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acworth, R.I. 1999Investigation of dryland salinity using the electrical image methodAustr. J. Soil Res.37623636Google Scholar
  2. Annan, A.P. and Chua, L.T., 1992, Ground penetrating radar performance predictions. in Pilon J.A. (Ed.), Ground Penetrating Radar, Geological Survey of Canada Paper 90(4), 5–13.Google Scholar
  3. Arnaud-Fassetta, G. 2003River channel changes in the Rhône Delta (France) since the end of the Little Ice Age: geomorphological adjustment to hydroclimatic change and natural resource managementCatena51141172CrossRefGoogle Scholar
  4. Baines, D., Smith, D.G., Froese, D.G., Bauman, P., Nimeck, G. 2002Electrical Resistivity Ground Imaging (ERGI): a new tool for mapping the lithology and geometry of channel-belts and valley-fillsSedimentology49441449CrossRefGoogle Scholar
  5. Baumgartner, F. 1996A new method for geoelectrical investigations underwaterGeophys. Prosp.447198Google Scholar
  6. Bhattacharya, J.P., Giosan, L. 2003Wave-influenced deltas: geomorphological implications for facies reconstructionSedimentology50187210CrossRefGoogle Scholar
  7. Birkhead, A.L., Heritage, G.L., White, H., Niekerk, A.W. 1996Ground-penetrating radar as a tool for mapping the phreatic surface, bedrock profile, and alluvial stratigraphy in the Sabie River, Kruger National ParkJ. Soil Water Conserv.51234241Google Scholar
  8. Caputo, R., Piscitelli, S., Oliveto, A., Rizzo, E., Lapenna, V. 2003High-resolution resistivity tomographies in Active Tectonic studies. Examples from the Tyrnavos Basin, GreeceJ. Geodyn.361935CrossRefGoogle Scholar
  9. Corbeanu, R.M., Soegaard, K., Szerbiak, R.B., Thurmond, J.B., McMechan, G.A., Wang, D., Snelgrove, S.H., Forster, C.B., Menitove, A. 2001Detailed internal architecture of a fluvial channel sandstone determined from outcrop, cores, and 3-D ground-penetrating radar: example from the middle Cretaceous Ferron Sandstone, east-central UtahA.A.P.G. Bull.8515831608Google Scholar
  10. La Vega, M., Osella, A., Lascano, E. 2003Joint inversion of Wenner and dipole-dipole data to study a gasoline-contaminated soilJ. Appl. Geophys.5497109Google Scholar
  11. Souza, H., Sampaio, E.E.S. 2001Apparent resistivity and spectral induced polarization in the submarine environmentAn. Acad. Bras. Cienc.73429444Google Scholar
  12. Evans, R.L., Law, L.K., Louis, B.S., Cheesman, S. 2000Buried paleo-channels on the New Jersey continental margin : channel porosity structures from electromagnetic surveyingMar. Geol.170381394Google Scholar
  13. Gaswirth, S.B., Ashley, G.M., Sheridan, R.E. 2002Use of seismic stratigraphy to identify conduits for saltwater intrusion in the vicinity of Raritan Bay, New JerseyEnviron. Eng. Geosci.8209218Google Scholar
  14. Gourry, J.C., Vermeersch, F., Garcin, M., Giot, D. 2003Contribution of geophysics to the study of alluvial deposits : a case study in the Val d’Avaray area of the River Loire, FranceJ. Appl. Geophy.543549Google Scholar
  15. A. Guerard. 1895. Mouth of the River Rhône. Excerpt Minutes of Proceedings of the Institution of Civil Engineers. James Forrest (Ed.). 82(4):34.Google Scholar
  16. Kraus, N.C. and Larson, M., 2002, Analytical model of navigation channel infilling by cross-channel transport. Proceedings 28th Coastal Engineering Conference, World Scientific Press 13.Google Scholar
  17. Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Rizzo, E., Sdao, F. 20052D Electrical Resistivity Imaging of some complex Landslides in Lucanian Apennine (Southern Italy)Geophysics70B11B18CrossRefGoogle Scholar
  18. Loke, M.H., Barker, R.D. 1996Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton methodGeophys. Prospect.44131152Google Scholar
  19. Maillet G.M., 2005. Recent and current sedimentary relationships between a river and its delta in microtidal area: example from Rhône River Mouth. Unpublished Ph-D Thesis. University of Provence, Aix-Marseille 1, 301p.Google Scholar
  20. Mosher, D.C., Law, L.K. 1996Application of concurrent marine electromagnetic and marine seismic high resolution profiling, British Columbia, CanadaJ. Env. Eng. Geophys.1215228Google Scholar
  21. Naudet, V., Revil, A., Rizzo, E., Bottero, J-Y., Bégassat, P. 2004Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigationsHydrol. Earth Syst. Sc. (H.E.S.S.)8822Google Scholar
  22. Nobes, D.C., Armstrong, M.J., Close, M.E. 2000Delineation of a landfill leachate plume and flow channels in coastal sands near Christchurch, New Zealand, using a shallow electromagnetic survey methodHydrogeol. J.8328336CrossRefGoogle Scholar
  23. Nobes, D.C., Ferguson, R.J., Brierley, G.J. 2001Ground-penetrating radar and sedimentological analysis of Holocene floodplains: insight from the Tuross valley, New South WalesAust. J. Earth Sc.48347355Google Scholar
  24. Reineck, H.E., Wunderlich, F. 1968Classification and origin of flaser and lenticular beddingSedimentology199104Google Scholar
  25. Revil, A., Cathles, L.M., Losh, S., Nunn, J.A. 1998Electrical conductivity in shaly sands with geophysical applicationsJ. Geophys. Res.103925936Google Scholar
  26. Revil, A., Leroy, P. 2001Hydroelectric coupling in a clayey materialGeophys. Res. Lett.2816431646CrossRefGoogle Scholar
  27. Revil, A., Finizola, A., Sortino, F., Ripepe, M. 2004Geophysical investigations at Stromboli volcano, Italy. Implications for ground water flowGeophys. J. Intern.157426440CrossRefGoogle Scholar
  28. Rizzo, E., Colella, A., Lapenna, V., Piscitelli, S. 2004High-resolution images of the fault controlled High Agri Valley basin (Southern Italy) with deep and shallow Electrical Resistivity TomographiesPhys. Chem. Earth29321327Google Scholar
  29. Sambuelli, L., Socco, L.V., Brecciaroli, L. 1999Acquisition and processing of electric, magnetic and G.P.R data on a Roman site (Victimulae, Salussola, Biella)J. Appl. Geophys.41189204Google Scholar
  30. Sasaki, Y. 1992Resolution of resistivity tomography inferred from numerical simulationGeophys. Prospect40453463Google Scholar
  31. Sharma P.S., (1997) Environmental and Engineering Geophysics. Cambridge Univ. Press, Hardcover (Ed): 499.Google Scholar
  32. Slater, L.D., Sandberg, S.K. 2000Resistivity and induced polarization monitoring of salt transport under natural hydraulic gradientsGeophysics65408420CrossRefGoogle Scholar
  33. Ward, S.H. 1990

    Resistivity and induced polarization methods

    Wards, S.H. eds. Geotechnical and Environmental GeophysicsS.E.GTulsa, O.K147189
    Google Scholar
  34. Waxman, M.H., Smits, L.J.M. 1968Electrical conductivities in oil bearing shaly sandSoc. Petr. Eng. J.8107122Google Scholar
  35. Yang, C.H., Tong, L.T., Huang, C.F. 1999Combined application of D.C. and T.E.M to sea-water intrusion mappingGeophysics64417425CrossRefGoogle Scholar
  36. Yang, C.H., You, J.I., Lin, C.P. 2002Delineating lake bottom structure by resistivity image profiling on water surfaceTerr. Atmos. Ocean. Sci.133952Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Grégoire M. Maillet
    • 1
    • 4
  • Enzo Rizzo
    • 2
    • 3
  • André Revil
    • 3
  • Claude Vella
    • 1
  1. 1.Geomorphology and Tectonics TeamCNRS-CEREGE, Université Aix-Marseille 1Aix-en-ProvenceFrance
  2. 2.Laboratory of GeophysicsCNR-IMAATito ScaloItaly
  3. 3.Hydrogeophysics and Porous Media TeamCNRS-CEREGE, Université Aix-Marseille 3Aix-en-ProvenceFrance
  4. 4.Institute of Radioprotection and Nuclear SafetyDEI/SESURE/LERCMCadaracheFrance

Personalised recommendations