Advertisement

Marine Geophysical Researches

, Volume 27, Issue 1, pp 19–34 | Cite as

An Evaluation of Publicly Available Global Bathymetry Grids

  • K. M. Marks
  • W. H. F. Smith
Article

Abstract

We evaluate the strengths and weaknesses of six publicly available global bathymetry grids: DBDB2 (Digital Bathymetric Data Base; an ongoing project of the Naval Research Laboratory), ETOPO2 (Earth Topography; National Geophysical Data Center, 2001, ETOPO2 Global 2’ Elevations [CD-ROM]. Boulder, Colorado, USA: U.S. Department of Commerce, National Oceanic and Atmospheric Administration), GEBCO (General Bathymetric Charts of the Oceans; British Oceanographic Data Centre, 2003, Centenary Edition of the GEBCO Digital Atlas [CD-ROM] Published on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization Liverpool, UK), GINA (Geographic Information Network of Alaska; Lindquist et al., 2004), Smith and Sandwell (1997), and S2004 (Smith, unpublished). The Smith and Sandwell grid, derived from satellite altimetry and ship data combined, provides high resolution mapping of the seafloor, even in remote regions. DBDB2, ETOPO2, GINA, and S2004 merge additional datasets with the Smith and Sandwell grid; but moving from a pixel to grid registration attenuates short wavelengths (<20 km) in the ETOPO2 and DBDB2 solutions. Short wavelengths in the GINA grid are also attenuated, but the cause is not known. ETOPO2 anomalies are offset to the northeast, due to a misregistration in both latitude and longitude. The GEBCO grid is interpolated from 500 m contours that were digitized from paper charts at 1:10 million scale, so it is artificially smooth; yet new efforts have captured additional information from shallow water contours on navigational charts. The S2004 grid merges the Smith and Sandwell grid with GEBCO over shallow depths and polar regions, and so is intended to capture the best of both products. Our evaluation makes the choice of which bathymetry grid to use a more informed one.

Keywords

bathymetric grids bathymetry Coral Sea DBDB2 ETOPO2 GEBCO GINA satellite bathymetry Woodlark Basin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. British Oceanographic Data Centre2003Centenary Edition of the GEBCO Digital Atlas [CD-ROM]Published on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic OrganizationLiverpool, UKGoogle Scholar
  2. GLOBE Task Team and Hastings, D.A., Dunbar, P.K., Elpingstone, G.M., Bootz, M., Murakami, H., Maruyama, H., Masaharu, H., Holland, P., Payne, J., Bryant, N., Logan, L., Muller, J.-P., Schreier, G. and MacDonald, J.S., 1999, The Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, Colorado, USAGoogle Scholar
  3. Goff, J.A. 1991A global and regional stochastic analysis of near-ridge abyssal hill morphologyJ. Geophys. Res.962171321737Google Scholar
  4. Goff, J.A., Smith, W.H.F., Marks, K.M. 2004The contributions of abyssal hill morphology and noise to altimetric gravity fabricOceanography172437Google Scholar
  5. Goodliffe, A., Taylor, B. and Martinez, F., 1999, Data Report: Marine geophysical surveys of the Woodlark Basin region, in Taylor, B., Huchon, P., Klaus, A., et al. (Eds.), Proceedings of the Ocean Drilling Program, Initial Reports, 180, pp. 1–20 [CD-ROM]. Ocean Drilling Program, Texas A&M University, College Station, Texas, USAGoogle Scholar
  6. Jakobsson, M., Cherkis, N.Z., Woodward, J., Macnab, R., Coakley, B. 2000New grid of Arctic bathymetry aids scientists and mapmakersEOS, Trans. Am. Geophys. Union818996Google Scholar
  7. Lindquist, K.G., Engle, K., Stahlke, D., Price, E. 2004Global topography and bathymetry grid improves research effortsEOS, Trans. Am. Geophys. Union85186CrossRefGoogle Scholar
  8. Mammerickx, J. 1993The foundation seamounts: tectonic setting of a newly discovered seamount chain in the South PacificEarth Planetary Sci. Lett.113293306CrossRefGoogle Scholar
  9. National Geophysical Data Center2001ETOPO2 Global 2’ Elevations [CD-ROM]U.S. Department of Commerce, National Oceanic and Atmospheric AdministrationBoulder, Colorado, USAGoogle Scholar
  10. National Geophysical Data Center2003Worldwide Marine Geophysical Data, GEODAS Version 4.1.18 [CD-ROM]Data Announcement 2003-MGG-02, U.S. Department of Commerce, National Oceanic and Atmospheric AdministrationBoulder, Colorado, USAGoogle Scholar
  11. Petkovic, P., Buchanan, C. 2002Australian Bathymetry and Topography Grid [digital dataset]Geoscience AustraliaCanberra, AustraliaGoogle Scholar
  12. Smith, W.H.F., Sandwell, D.T. 1994Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetryJ. Geophys. Res.992180321824CrossRefGoogle Scholar
  13. Smith, W.H.F., Sandwell, D.T. 1997Global sea floor topography from satellite altimetry and ship depth soundingsScience27719561962CrossRefGoogle Scholar
  14. U. S. Geological Survey1996Global 30 Arc-Second Elevation Data Set (GTOPO30). EROS Data CenterLand Processes Distributed Active Archive CenterSioux Falls, South Dakota, USAGoogle Scholar
  15. Wessel, P., Smith, W.H.F. 1996A global self-consistent hierarchical high-resolution shoreline databaseJ. Geophys. Res.10187418743CrossRefGoogle Scholar
  16. Wessel, P., Smith, W.H.F. 1998New, improved version of Generic Mapping Tools releasedEOS, Trans. Am. Geophys. Union79579Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.NOAA Laboratory for Satellite AltimetrySilver SpringUSA

Personalised recommendations