Marine Geophysical Researches

, Volume 27, Issue 2, pp 137–153 | Cite as

Hydrothermal Vent Geology and Biology at Earth’s Fastest Spreading Rates

  • Richard N. Hey
  • Gary J. Massoth
  • Robert C. Vrijenhoek
  • Peter A. Rona
  • John Lupton
  • David A. Butterfield


Earth’s fastest present seafloor spreading occurs along the East Pacific Rise near 31°–32° S. Two of the major hydrothermal plume areas discovered during a 1998 multidisciplinary geophysical/hydrothermal investigation of these mid-ocean ridge axes were explored during a 1999 Alvin expedition. Both occur in recently eruptive areas where shallow collapse structures mark the neovolcanic axis. The 31° S vent area occurs in a broad linear zone of collapses and fractures coalescing into an axial summit trough. The 32° S vent area has been volcanically repaved by a more recent eruption, with non-linear collapses that have not yet coalesced. Both sites occur in highly inflated areas, near local inflation peaks, which is the best segment-scale predictor of hydrothermal activity at these superfast spreading rates (150 mm/yr).

Key words:

East Pacific Rise hydrothermal vents seafloor spreading vent biology vent chemistry vent flux 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker E.T. and German C.R., 2004, On the global distribution of hydrothermal vent fields, in German C.R., Lin J. and Parson L.M. (eds.), Mid-ocean ridges: Hydrothermal Interactions Between the Lithosphere and Oceans, Geophysical Monograph 148, American Geophysical Union, pp. 245–266Google Scholar
  2. Baker E.T., Hey R.N., Lupton J.E., Resing J.A., Feely R.A., Gharib J.J., Massoth G.J., Sansone F.J., Kleinrock M., Martinez F., Naar D.F., Rodrigo C., Bohnenstiehl D. and Pardee D., 2002, Hydrothermal venting along Earth’s fastest spreading center: East Pacific Rise, 27.5–32.3° S, J. Geophys. Res. 107, 10.1029/20a01JB000651Google Scholar
  3. Bird R.T., Naar D.F., Larson R.L., Searle R.C. and Scotese C.R. (1998). Plate tectonic reconstructions of the Juan Fernandez microplate: Transformation from internal shear to rigid rotation. J. Geophys. Res. 103: 7049–7067CrossRefGoogle Scholar
  4. Bishoff J.L. and Rosenbauer R.J. (1985). An empirical equation of state for hydrothermal seawater (3.2 percent NaCl). Am. J. Sci. 285: 725–763CrossRefGoogle Scholar
  5. Bohnenstiehl D.R and Kleinrock M.C. (1999). Faulting and fault scaling on the median valley floor of the TAG segment, 26 N, Mid-Atlantic Ridge. J. Geophys. Res. 104(29): 351–29,364Google Scholar
  6. DeMets C., Gordon R.G., Argus D.F. and Stein S. (1990). Current plate motions. Geophys. J. Int. 101: 425–478CrossRefGoogle Scholar
  7. DeMets C., Gordon R.G., Argus D.F. and Stein S. (1994). Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett. 21: 2191–2194CrossRefGoogle Scholar
  8. Desbruyères D. and Segonzac M., 1997, Handbook of Deep-Sea Hydrothermal Vent Fauna, 279 pp. Brest, France: Éditions IFREMERGoogle Scholar
  9. Edwards M.H., Fornari D.J., Malinverno A., Ryan W.B.F. and Madsen J. (1991). The regional tectonic fabric of the East Pacific Rise from 12°50′ N to 15°10′ N,. J. Geophys. Res. 96: 7995–8017Google Scholar
  10. Fornari, D.J., and Embley R.W., 1995, Tectonic and volcanic controls on hydrothermal processes at the mid-ocean ridge: An overview based on near-bottom and submersible studies, in Physical, Chemical, Biological, and Geological Interactions within Seafloor Hydrothermal Systems, in Humphris, S.E., Zierenberg R.A., Mullineaux L. and Thomson R. (eds.), Geophysical Monograph 91, American Geophysical Union, pp. 1–46Google Scholar
  11. Fornari D.J., Haymon R.M., Perfit M.R., Gregg T.K.P. and Edwards M.H. (1998). Axial summit trough of the East Pacific Rise 9°–10°N: Geological characteristics and evolution of the axial zone on fast spreading mid-ocean ridges. J. Geophys. Res. 103: 9827–9855CrossRefGoogle Scholar
  12. Fornari, D., Tivey, M., Schouten, H., Perfit, M., Yoerger, D., Bradley, A., Edwards, M., Haymon, R., Scheirer, D., Von, K., Damm Shank, T. and Soule, A., 2004, Submarine lava flow emplacement at the East Pacific Rise 9°50′ N: Implications for uppermost ocean crust stratigraphy and hydrothermal fluid circulation, in Mid-ocean ridges: Hydrothermal Interactions Between the Lithosphere and Oceans, in German C.R., Lin J. and Parson L.M. (eds.), Geophysical Monograph 148, American Geophysical Union, Washington, D.C., pp. 187–217Google Scholar
  13. Francheteau J., Yelles-Chaouche A. and Craig H. (1987). The Juan Fernandez microplate north of the Pacific-Nazca-Antarctic plate junction at 35° S. Earth Planet Sci. Lett. 86: 253–268CrossRefGoogle Scholar
  14. Guinot D. and Hurtado L.A. (2003). Two new species of hydrothermal vent crabs of the genus Bythograea from the southern East Pacific Rise and from the Galapagos Rift (Crustacea Decapoda Brachyura Bythograeidae). C.R. Biologies 326: 423–439CrossRefGoogle Scholar
  15. Guinot D., Hurtado L.A. and Vrijenhoek R.C. (2002). New genus and species of brachyuran crab from the southern East Pacific Rise (Crustacea Decapoda Brachyura Bythograeidae). C.R. Biologies 325(11): 1119–1128CrossRefGoogle Scholar
  16. Hannington, M.D., Jonasson, I.R., Herzig, P.M. and Petersen, S., 1995, Physical and chemical processes of seafloor mineralization at mid-ocean ridges, in Humphris, S.E., Zierenberg, R.A., Mullineaux, L. and Thomson, R. (eds.), Physical, Chemical, Biological, and Geological Interactions within Seafloor Hydrothermal Systems Geophysical Monograph 91, American Geophysical Union, pp. 115–157Google Scholar
  17. Haymon R.M., Fornari D.J., Edwards M.H., Carbotte S., Wright D. and Macdonald K.C. (1991). Hydrothermal vent distribution along the East Pacific Rise crest (9°09′-54′ N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges,. Earth Planet. Sci. Lett. 104: 513–534CrossRefGoogle Scholar
  18. Haymon R.M., (1993). Volcanic eruption of the mid-ocean ridge along the East Pacific Rise at 9°45–52′ N: Direct submersible observation of seafloor phenomena associated with an eruption event in April, 1991. Earth Planet. Sci. Lett. 119: 85–101CrossRefGoogle Scholar
  19. Hey R.N., Johnson P.D., Martinez F., Korenaga J., Somers M.L., Huggett Q.J., LeBas T.P., Rusby R.I. and Naar D.F. (1995). Plate boundary reorganization at a large-offset, rapidly propagating rift. Nature 378: 167–170CrossRefGoogle Scholar
  20. Hey R.N., Baker E., Bohnenstiehl D., Massoth G., Kleinrock M., Martinez F., Naar D., Pardee D., Lupton J., Feely R., Gharib J., Resing J., Rodrigo C., Sansone F. and Walker S., 2004, Tectonic/Volcanic Segmentation and Controls on Hydrothermal Venting along Earth’s Fastest Seafloor Spreading System, EPR 27°–32° S, Geochem. Geophys. Geosyst., Vol. 5, No. 12, Q12007, doi: 10.1029/2004GC0 00764Google Scholar
  21. Hurtado L.A., Mateos M., Lutz R.A. and Vrijenhoek R.C. (2002). Molecular evidence for multiple species of Oasisia (Annelida: Siboglinidae) at eastern Pacific hydrothermal vents. Cah. Biol. Mar. 34(3–4): 377–380Google Scholar
  22. Hurtado L.A., Lutz R.A. and Vrijenhoek R.C. (2004). Distinct patterns of genetic differentiation among annelids of eastern pacific hydrothermal vents. Molec. Ecol. 13(9): 2603–2615CrossRefGoogle Scholar
  23. Larson R.L., Searle R.C., Kleinrock M.C., Schouten H., Bird R.T., Naar D.F., Rusby R.I., Hooft E.E. and Lasthiotakis H. (1992). Roller-bearing tectonic evolution of the Juan Femandez microplate. Nature 356: 571–576CrossRefGoogle Scholar
  24. Lupton J., Butterfield D., Lilley M., Ishibashi J., Hey D., Evans L., 1999, Gas chemistry of hydrothermal fluids along the East Pacific Rise, 5° S–32° S (abstract), Eos Trans. AGU, Fall Meet. Suppl., F1099Google Scholar
  25. Macdonald K.C., Becker K., Spiess F.N. and Ballard R.D. (1980). Hydrothermal heat flux of the “black smoker”vents on the East Pacific rise. Earth Planet. Sci. Lett. 48: 1–7CrossRefGoogle Scholar
  26. Macdonald K.C., Scheirer D.S. and Carbotte S.M. (1991). Mid-ocean ridges: Discontinuities, segments and giant cracks. Science 253: 986–994CrossRefGoogle Scholar
  27. Martin J.W. and Shank T.M. (2005). A new species of Chorocaris (Decapoda, Caridea, Alvinocarididae) from hydrothermal vents in the eastern Pacific. Proc. Biol. Soc. Washington 118: 183–198CrossRefGoogle Scholar
  28. Martinez F., Hey R.N. and Johnson P.D. (1997). The East ridge system 28.5–32°S East Pacific Rise: implications for overlapping spreading center development. Earth Planet Sci. Lett. 151: 13–31CrossRefGoogle Scholar
  29. Massoth G.J., Baker E.T., Feely R.A., Lupton J.E., Collier R.W., Gendron J.F., Roe K.K., Maenner S.M. and Resing J.A. (1998). Manganese and iron in hydrothermal plumes resulting from the 1996 Gorda Ridge Event. Deep-Sea Res.II 45: 2683–2712CrossRefGoogle Scholar
  30. Naar D.F. and Hey R.N. (1989). Recent Pacific-Easter-Nazca plate motions, in Evolution of Mid-Oceanic Ridges. AGU Geophys. Monogr. 57: 9–30Google Scholar
  31. Naar D.F. and Hey R.N. (1991). Tectonic evolution of the Easter microplate. J. Geophys. Res. 96: 7961–7993Google Scholar
  32. Rona P.A. (1988). Hydrothermal mineralization at oceanic ridges. Can. Mineral. 26: 431–465Google Scholar
  33. Rona P.A. and Trivett D.A. (1992). Discrete and diffuse heat transfer at ASHES vent field, Axial Volcano, Juan de Fuca Ridge. Earth Planet. Sci. Lett. 109: 57–71CrossRefGoogle Scholar
  34. Scheirer D.S. and Macdonald K.C. (1993). Variation in cross-sectional area of the axial ridge along the East Pacific Rise: Evidence for the magmatic budget of a fast-spreading center. J. Geophys. Res. 98: 7871–7885CrossRefGoogle Scholar
  35. Scheirer D.S., Fornari D.J., Humphris S.E. and Lerner S. (2000). High-resolution seafloor mapping using the DSL-120 sonar system: Quantitative assessment of sidescan and phase-bathymetry data from the Lucky Strike segment of the Mid-Atlantic ridge. Mar. Geophys. Res. 21: 121–142CrossRefGoogle Scholar
  36. Southward E.C., Tunnicliffe V. and Black M. (1995). Revision of the species of Ridgeia from northeast Pacific hydrothermal vents, with a redescription of Ridgeia piscesae Jones (Pogonophora: Obturata = Vestimentifera). Can. J. Zool. 73: 282–295Google Scholar
  37. Stewart W.K., Chu D., Malik S., Lerner S. and Singh H. (1994). Quantitative seafloor characterization using a bathymetric sidescan sonar. J. Ocean. Engin. 19: 599–610CrossRefGoogle Scholar
  38. Vrijenhoek R.C. (1997). Gene flow, genetic diversity in naturally fragmented metapopulations of deep-sea hydrothermal vent animals. J. Hered. 88: 285–293Google Scholar
  39. Walker S.L., Baker E.T., Massoth G.J. and Hey R.N., 2004, Short-term variations in the distribution of hydrothermal plumes along a superfast spreading center, East Pacific Rise, 27°30′–32°20′ S, Geochem.Geophys.Geosyst., 5, Q12005, doi:10.1029/2004GC000789Google Scholar
  40. Wetzel L.R., Wiens D.A. and Kleinrock M.C. (1993). Evidence from earthquakes for bookshelf faulting at large non-transform ridge offsets. Nature 362: 235–237CrossRefGoogle Scholar
  41. White S.M., Macdonald K.C. and Haymon R.M. (2000). Basaltic lava domes, lava lakes, and volcanic segmentation on the southern East Pacific Rise. J. Geophys. Res. 105: 23519–23536CrossRefGoogle Scholar
  42. Won Y., Young C.R., Lutz R.A. and Vrijenhoek R.C. (2003). Dispersal barriers and isolation among deep-sea mussel populations (Mytilidae:Bathymodiolus) from eastern Pacific hydrothermal vents. Molec. Ecol. 12: 169–184CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Richard N. Hey
    • 1
  • Gary J. Massoth
    • 2
  • Robert C. Vrijenhoek
    • 3
  • Peter A. Rona
    • 4
  • John Lupton
    • 5
  • David A. Butterfield
    • 6
  1. 1.Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and TechnologyUniversity of HawaiiHonoluluUSA
  2. 2.Institute of Geological and Nuclear SciencesLower HuttNew Zealand
  3. 3.Monterey Bay Aquarium Research InstituteMoss LandingUSA
  4. 4.Institute of Marine and Coastal Sciences and Department of Geological SciencesRutgers UniversityNew BrunswickUSA
  5. 5.NOAA Pacific Marine Environmental LaboratoryNewportUSA
  6. 6.Joint Institute for the Study of the Atmosphere and OceanUniversity of WashingtonUSA

Personalised recommendations