Marine Geophysical Researches

, Volume 25, Issue 3–4, pp 283–304 | Cite as

Deep Crustal Structure of the Continental Margin off the Explora Escarpment and in the Lazarev Sea, East Antarctica

  • Wilfried Jokat
  • Oliver Ritzmann
  • Christian Reichert
  • Karl Hinz
Article

Abstract

This study presents the results of a seismic refraction experiment that was carried out off Dronning Maud Land (East Antarctica) along the Explora Escarpment (14° W–12° W) and close to Astrid Ridge (6°E). Oceanic crust of about 10 km thickness is observed northwest of the Explora Escarpment. Stretched continental crust, observed southeast of the escarpment, is most likely intruded by volcanic material at all crustal levels. Seismic velocities of 7.0–7.4 km/s are modelled for the lower crust. The northern boundary of this high velocity body coincides approximately with the Explora Escarpment. The upper crystalline crust is overlain by a 4-km thick and 70-km wide wedge of volcanic material: the Explora Wedge. Seismic velocities for the oceanic crust north of the Explora Escarpment are in good agreement with global studies. The oceanic crust in the region of the Lazarev Sea is also up to 10-km thick. The lower crystalline crust shows seismic velocities of up to 7.4 km/s. This, together with the larger crustal thickness might point to higher mantle temperatures during the formation of the oceanic crust. The more southerly rifted continental crust is up to 25-km thick, and also has seismic velocities of 7.4 km/s in the lower crystalline crust. This section is interpreted to consist of stretched continental crust, which is heavily intruded by volcanic material up to approximately 8-km depth. Multichannel seismic data indicate that, in this region, two volcanic wedges are present. The wedges are interpreted to have evolved during different time/rift periods. The wedges have a total width of at least 180 km in the Lazarev Sea. Our results support previous findings that the continental margin off Dronning Maud Land between ≈2°E and ≈13°E had a complex and long-lived rift history. Both continental margins can be classified as rifted volcanic continental margins that were formed during break-up of Gondwana.

Keywords

Rifted continent margin Weddell Sea Antarctica seismic reflection data seismic refraction data continent–ocean transition Gondwana 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, P.F., Kennet, J.P.,  et al. 1988SITE 690Proc. ODP, Init. Repts.113183292Google Scholar
  2. Barton, A.J., White, R.S. 1997Crustal structure of Edoras Bank continental margin and thermal anomalies beneath the North AtlanticJ. Geophys. Res.10231093129CrossRefGoogle Scholar
  3. Bauer, K., Neben, S., Schreckenberger, B., Emmermann, R., Hinz, K., Fechner, N., Gohl, K., Schulze, A., Trumbull, R.B., Weber, K. 2000Deep structure of the Namibia continental margin as derived from integrated geophysical studiesJ. Geophys. Res.1052582925853CrossRefGoogle Scholar
  4. Bergh, H.W. 1987Underlying fracture zone nature of Astrid Ridge off Antarctica’s Quenn Maud LandJ. Geophys. Res.92475484Google Scholar
  5. Cox, K.G., 1992, Karoo igneous activity, and the early stages of the break-up of Gondwanaland, in: Storey, B.C., Alabaster, T., Pankhurst, R.J. (eds.), Magmatism and the Causes of Continental Break-up, pp. 137–148, Geological Society Special Publication No. 68, London.Google Scholar
  6. Christensen, N.I., Mooney, W.D. 1995Seismic velocity structure and composition of the continental crustJ. Geophys. Res.10097619788CrossRefGoogle Scholar
  7. Erzinger, J., Coffin, M.F., Duncan, R.A., Hinz, K. and Talwani, M., 1998, White paper of ILP workshop volcanic margins, In: Proceedings of the International Lithosphere Program, Workshop Volcanic Margins, GeoForschungsZentrum Potsdam, Germany.Google Scholar
  8. Fowler, S.R., White, R.S., Spence, G.D., Westbrook, G.K. 1989The Hatton Bank continental margin II. Deep structure from two ship expanding spread profilesGeophys. J. Int.96295309Google Scholar
  9. Ghidella, M.E., LaBrecque, J.L. 1997

    Jurassic conjugate margins of the Weddell Sea: considerations based on magnetics, gravity and paleobathymetry data

    Ricci, C.A. eds. The Antarctic Region: Geological Evolution and ProcessesTerra Antarctica PublicationSiena441451
    Google Scholar
  10. Grantham, G.H., 1996, Aspects of Jurassic magmatism and faulting in western Dronning Maud Land, Antarctica: implications for Gondwana break-up, in: Storey, B., King, E.C. and Livermore, R.A. (eds.), Weddell Sea Tectonics and Gondwana Break-up, pp. 63–71, Geological Society Special Publication No. 108, London.Google Scholar
  11. Henriet, J.P. and Miller, H., 1990, Some speculations regarding the nature of the Explora- Andenes Escarpment, Weddell Sea, in: Bleil, U. and Thiede, J. (eds.), Geological History of the Polar Oceans: Arctic Versus Antarctic, pp. 163–169, Kluwer Academic Publishers.Google Scholar
  12. Hinz, K. 1981A Hypothesis of terrestrial catastrophes – wedges of very thick Oceanward dipping layers beneath passive continental margins - their origin and paleoenvironmental significanceGeologisches JahrbuchE22328Google Scholar
  13. Hinz, K., Krause, W. 1982The continental margin of Queen Maud Land/Antarctica: seismic sequences, structural elements and geophysical developmentGeologisches Jahrbuch E231741Google Scholar
  14. Hinz, K., Kristoffersen, Y. 1987Antarctica, recent advances in the understanding of the continental shelfGeologisches Jahrbuch37354Google Scholar
  15. Hinz, K. 1996, Marine Geophysical Studies on the East Antarctic Continental Margin, in the Lazarev and Cosmonaut Seas, and on the Agulhas Plateau, Bundesanstalt für Geowissenschaften und Rohstoffe (Hannover), Archive-Nr. 114.646, 104 pp.Google Scholar
  16. Holbrook, W.S., Purdy, G.M., Sheridan, R.E., Glover, L.,III, Talwani, M., Ewing, J., Hutchinson,  1994Seismic structure of the U.S. Mid-Atlantic marginJ. Geophys. Res.991787117891CrossRefGoogle Scholar
  17. Hübscher, C., Jokat, W. and Miller, H., 1996, Crustal structure of the Antarctic continental margin in the eastern Weddell Sea, in: Storey, B., King, E.C. and Livermore, R.A. (eds.), Weddell Sea Tectonics and Gondwana Break-up, pp. 165–174, Geological Society Special Publication No. 108, London.Google Scholar
  18. Jokat, W., Hübscher, C., Meyer, U., Oszko, L., Schöne, T., Versteeg, W. and Miller, H., 1996, The continental margin off East Antarctica between 10°W and 30°W, in: Storey, B., King, E.C. and Livermore, R.A. (eds.), Weddell Sea Tectonics and Gondwana Break-up, pp. 129–141, Geological Society Special Publication No. 108, London.Google Scholar
  19. Jokat, W., Oerter, H. 1997The Expedition ANTARKTIS-XIV mit RV Polarstern in 1997 – Report of Leg ANT-XIV/3Alfred-Wegener-Institut für Polar und MeeresforschungBremerhaven267Google Scholar
  20. Jokat, W., Boebel, T., König, M., Meyer, U. 2003aTiming and geometry of early Gondwana breakupJ. Geophys. Res.1082428CrossRefGoogle Scholar
  21. Jokat, W., Ritzmann, O., Schmidt-Aursch, M.C., Drachev, S., Gauger, S., Snow, J. 2003Geophysical evidence for reduced melt production on the ultra-slow Gakkel Ridge (Arctic Ocean)Nature423962965CrossRefPubMedGoogle Scholar
  22. Kaul, N.E. 1991Detaillierte seismische Untersuchungen am östlichen Kontinentalrand des Weddell Meeres vor Kapp Norvegia, Antarktis, Berichte zur Polarforschung, 89Alfred- Wegener-Institut fur Polar und MeeresforschungBremerhavenGoogle Scholar
  23. Kristoffersen, Y. and LaBrecque, J.L., 1991, On the tectonic history and origin of the Northeast Georgia Rise, in: Ciesielski, O.F., Kristoffersen, Y. et al. (eds.), Proc. ODP, Sci. Results, 114, pp. 23–38. College Station, Tx (Ocean Drilling Program).Google Scholar
  24. Kudryavtzev, G.A., Butzenko, V.V. and Kadmina, I.N. 1991, Crustal section across the western Dronning Maud Land continental margin from geophysical data, in: Abstracts, Sixth international sysmposium on Antarctic earth sciences, pp. 330–335. National Institute for Polar Research, Tokyo.Google Scholar
  25. LaBrecque, J.L., Barker, P. 1981The age of the Weddell BasinNature290489492CrossRefGoogle Scholar
  26. Marks, K.M., Tikku, A.A. 2001Cretaceous reconstruction of East Antarctica, Africa and MadagascarEarth Planet. Sci. Lett.186479495CrossRefGoogle Scholar
  27. Marsh, J.S. and Watkeys, M.J., 1997, Karoo and Edenteka flood basalt provinces, southern Africa, and the tectonic development of their adjacent continental margins, In: Proc.ILP Workshop “Volcanic Margins”, pp. 31–32. GeoforschungsZentrum Potsdam, Germany.Google Scholar
  28. Martin, A.K., Hartnady, C.J.H. 1986Plate tectonic development of the southwest Indian Ocean: a revised reconstruction of East Antarctica and AfricaJ. Geophys. Res.9147674786Google Scholar
  29. Meissner, R. 1986The Continental Crust – A Geophysical ApproachAcademic PressLondonGoogle Scholar
  30. Miller, H., De Batist, M., Jokat, W., Kaul, N., Steinmetz, S., Uenzelmann-Neben, G. and Versteeg, W., 1991, Revised Interpretation of Tectonic features in the Southern Weddell Sea, Antarctica, from new seismic data, Polarforschung 60(1), 33–38.Google Scholar
  31. Mjelde, R., Digranes, P., Schaack, M.V., Shimamura, H., Shiobara, H., Kodaira, S., Naess, O., Sørenes, N., Vågnes, E. 2001Crustal structure of the outer Vøring Plateau, offshore Norway, from ocean bottom seismic and gravity dataJ. Geophys. Res.10667696791CrossRefGoogle Scholar
  32. Mutter, C.Z., Mutter, J.C. 1993Variations in thickness of layer 3 dominate oceanic crustal structureEarth Planet. Sci. Lett.17295317CrossRefGoogle Scholar
  33. Mutter, J.C., Buck, W.R., Zehnder, C.M. 1988Convective partial melting, a model for the formation of thick basaltic sequences during the initiation of spreadingJ. Geophys. Res.9310311048Google Scholar
  34. Neben, S., Guseva, Y.B., Hinz, K., Kudryavtsev, G.A., and Roeser, H.A. 1999, Frühe Öffnungsphase der Riiser-Larsen-See und Lazarev-See – Kompilation und Interpretation neuer geophysikalischer Datensatze. Abschlußbericht DFG-Forschungsvorhaben Hi-179/27-1, pp. 56, Bundesanstalt fur Geowissenschaften und Rohstoffe (Hannover), Archive-Nr. 0 119.371.Google Scholar
  35. Planke, S., Eldholm, O. 1994Seismic response and construction of seaward dipping wedges of flood basalts: vøring volcanic marginJ. Geophys. Res.9992639278CrossRefGoogle Scholar
  36. Purdy, G.M. and Ewing J., 1986, Seismic structure of ocean crust, In: Vogt, P.R. and Tucholke, B.E. (eds.), The Geology of North America,Vol M, pp. 313–330, The Geological Society of America.Google Scholar
  37. Reid, I., Jackson, H.R. 1981Oceanic spreading rate and crustal thicknessMarine Geophys. Res.5165172Google Scholar
  38. Roeser, H.A., Fritsch, J. and Hinz, K., 1996, The development of the crust off Dronning Maud Land, East Antarctica, in: Storey, B., King, E.C. and Livermore, R.A. (eds.), Weddell Sea Tectonics and Gondwana Break-up, pp. 243–264, Geological Society Special Publication No. 108, London.Google Scholar
  39. Studinger, M. 1998Interpretation und Analyse von Potentialfelddaten im Weddellmeer, Antarktis: der Zerfall des Superkontinents Gondwana, Berichte zur Polarforschung 276Alfred-Wegener-Institut fur Polar und MeeresforschungBremerhavenGoogle Scholar
  40. Studinger, M., Miller, H. 1999Crustal structure of the Filchner-Ronne shelf and Coats Land, Antarctica, from gravity and magnetic data: implications for the breakup of GondwanaJ. Geophys. Res.1042037920394CrossRefGoogle Scholar
  41. Uenzelmann-Neben, G., Gohl, K., Ehrhardt, A. 1999Agulhas Plateau, SW Indian Ocean: new evidence for exessive volcanismGeophys. Res. Let.2619411944CrossRefGoogle Scholar
  42. Watkeys, M.K., 2002, Development of the Lebombo rifted volcanic margin of southeast Africa, In: Menzies, M.A., Klemperer, S.L., Ebinger, C.J. and Baker, J. (eds.), Volcanic Rifted Margins, <b>362</b>, pp. 27–46, Boulder Colorado, Geological Society of America Special Paper.Google Scholar
  43. White, R.S., McKenzie, D. 1989Magmatism at rift zones: The generation of volcanic continental margins and flood basaltsJ. Geophys. Res.9476857729Google Scholar
  44. White, R.S., McKenzie, D. 1995Mantle plumes and flood basaltsJ. Geophys. Res.1001754317585CrossRefGoogle Scholar
  45. Zelt, C.A., Smith, R.B. 1992Seismic travel time inversion for 2-D crustal velocity structuresGeophys. J. Int.1081643Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Wilfried Jokat
    • 1
  • Oliver Ritzmann
    • 1
  • Christian Reichert
    • 2
  • Karl Hinz
    • 2
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.German Federal Institute for Geosciences and Natural ResourcesHanoverGermany

Personalised recommendations