Advertisement

Marine Geophysical Researches

, Volume 24, Issue 3–4, pp 311–327 | Cite as

Inhomogeneous substrate analysis using EM300 backscatter imagery

  • Yves Le Gonidec
  • Geoffroy Lamarche
  • Ian C. Wright
Article

Abstract

Backscatter reflectivity from multibeam echo-sounders provides a powerful tool to efficiently characterize seafloor substrates. A comprehensive EM300 bathymetric and backscatter survey has been completed of Cook Strait, in central New Zealand. This paper presents a detailed analysis of the realtime corrections applied to the raw EM300 multibeam data and additional corrections required to compute angular variations of the backscatter strength. The corrections, including the local absorption coefficient, the influence of seafloor topography and sound refraction in the water column, are determined for different Cook Strait seafloor substrates. Modifying MB-System software code, we extracted the backscatter signal parameters in order to quantify the raw backscatter strength and apply additional processing. Profiles of backscatter strength versus incidence angle were computed for a variety of sites characterized by flat seafloor and homogeneous substrates, and for which ground-truth data were available. For each homogeneous site, different but characteristic backscatter profiles are observed that can be interpreted in terms of sediment facies. To analyze heterogeneous substrates, we present a statistical technique, based on a 3-dimensional distribution of (incidence angle, backscatter strength) couples that preserves geological information of the substrate components. This analysis, using backscatter data acquired on a submarine volcano, north of New Zealand, clearly differentiates soft sediments and lava flows within a heterogeneous substrate.

Keywords

backscatter Cook Strait EM300 multibeam reflectivity seafloor characterization substrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augustin, J.M., Le Suave, R., Lurton, X., Voisset, M., Dugelay, S., Satra, C. 1996Contribution of the multibeam acoustic imagery to the exploration of the sea-bottomMar. Geophys. Res.18459486Google Scholar
  2. Augustin J.M., Dugelau S., Lurton X., Voisset M., 1997, Applications of an image segmentation technique to multibeam echo-sounder data. Proc. IEEE OCEANS’97, 1365–1369Google Scholar
  3. Briggs, K.B., Williams, K.L., Jackson, D.R., Jones, C.D., Ivakin, A.N., Orsi, T.H. 2002Fine-scale sedimentary structure: Implications for acoustic remote sensingMar. Geol.182141159CrossRefGoogle Scholar
  4. Caress, D.W., Chayes, D.N. 1995New software for processing sidescan data from sidescan-capable multibeam sonarsProc. IEEE OCEANS’959971000Google Scholar
  5. Caress, D.W., Chayes, D.N. 1996Improved processing of hydrosweep DS multibeam data on the R/V Maurice EwingMar. Geophys. Res.18631650CrossRefGoogle Scholar
  6. Caress D.W., Chayes D.N., 2003, MB-System, Open source software distributed from URL: http://www.ldeo.columbia.edu/MB-System.Google Scholar
  7. Carter, L. 1992Acoustical characterization of seafloor sediments and its relationship to active sedimentary processes in Cook Strait, New ZealandN.Z. J. Geol. Geophys.35289300Google Scholar
  8. Carter, L., Lewis, K.B., Davey, F. 1988Faults in Cook Strait and their bearing on the structure of central New ZealandN.Z. J. Geol. Geophys.31431446Google Scholar
  9. Chakraborty, B., Schenke, H.W., Kodagali, V., Hagen, R. 2002Estimating deep seafloor interface and volume roughness parameters using the multibeam-Hydrosweep systemMar. Geod.251926CrossRefGoogle Scholar
  10. Chotiros, N.P., Altenburg, R., Piper, J. 1997Analysis of acoustic backscatter in the vicinity of the Dry TortugasGeo-Marine Lett.17325334CrossRefGoogle Scholar
  11. Cochrane, G.R., Lafferty, K.D. 2002Use of acoustic classification of sidescan sonar data for mapping benthic habitat in the northern Channel Islands, CaliforniaContin. Shelf Res.22683690CrossRefGoogle Scholar
  12. Cutter, G.R.,Jr., Rzhanov, Y., Mayer, L.A. 2003Automated segmentation of seafloor bathymetry from multibeam echo-sounder data using local Fourier histogram textures featuresJ. Experim. Mar. Biol. Ecol.285–286355370CrossRefGoogle Scholar
  13. Moustier, C. 1986Beyond bathymetry: Mapping acoustic backscattering from the deep seafloor with Sea BeamJ. Acoust. Soc. Am.79316331Google Scholar
  14. Moustier, C., Matsumoto, H. 1993Seafloor acoustic remote sensing with multibeam echo-sounders and bathymetry sidescan sonar systemsMar. Geophys. Res.152742CrossRefGoogle Scholar
  15. Gardner, J.V., Field, M.E., Lee, H., Edwards, B.E. 1991Ground-truthing 6.5-kHz side scan sonographs: What are we really imaging?J. Geophys. Res.9659555974Google Scholar
  16. Goff, J.A., Olson, H.C., Duncan, C.S. 2000Correlation of side-scan backscatter intensity with grain-size distribution of shelf sediments, New Jersey MarginGeo-Marine Lett.204349CrossRefGoogle Scholar
  17. Guillon, L., Lurton, X. 2001Backscattering from buried sediment layers: The equivalent input backscattering strength modelJ. Acoust. Soc. Am.109122132CrossRefGoogle Scholar
  18. Hamilton, E.L. 1980Geoacoustic modeling of the sea floorJ. Acoust. Soc. Am.6813131340Google Scholar
  19. Hellequin L., Lurton X., Augustin J.M., 1997, Postprocessing and signal corrections for multibeam echo-sounder images. Proc. IEEE OCEANS’97, 23–26Google Scholar
  20. Hines, P.C. 1990Theoretical model of acoustic backscatter from a smooth seabedJ. Acoust. Soc. Am.88324334Google Scholar
  21. Hughes Clarke, J.E., Mayer, L.A., Wells, D.E. 1996Shallow-water imaging multibeam sonars: A new tool for investigating seafloor processes in the coastal zone and on the continental shelfMar. Geophys. Res.18607629CrossRefGoogle Scholar
  22. Hughes Clarke J.E., Danforth B.W., Valentine P., 1997, Areal seabed classification using backscatter angular response at 95kHz. High Frequency Acoustics in Shallow Water, 243–250.Google Scholar
  23. Hughes Clarke J.E., Gardner J.V., Torresan M., Mayer L.A., 1998, The limits of spatial resolution achievable using a 30kHz multibeam sonar: Model predictions and field results. Proc. IEEE OCEANS’98, 1823–1827.Google Scholar
  24. Jackson, D.R., Winebrenner, D.P., Ishimaru, A. 1986Application of the composite roughness model to high-frequency bottom backscatteringJ. Acoust. Soc. Am.7914101422Google Scholar
  25. Jackson, D.R., Briggs, K.B. 1992High-frequency bottom backscattering: Roughness versus sediment volume scatteringJ. Acoust. Soc. Am.92962977Google Scholar
  26. Keeton, J.A., Searle, R.C. 1996Analysis of Simrad EM12 multibeam bathymetry and acoustic backscatter data for seafloor mapping, exemplified at the Mid-Atlantic Ridge at 45° NMar. Geophys. Res.18663688CrossRefGoogle Scholar
  27. Kostylev, V.E., Todd, B.J., Fader, G.B.J., Courtney, R.C., Cameron, G.D.M., Pickrill, R.A. 2001Benthic habitat mapping on the Scotian Shelf based on multibeam bathymetry, surficial geology and sea floor photographsMar. Ecol. Prog. Ser.219121137Google Scholar
  28. Le Gonidec, Y., Gibert, D., Proust, J.N. 2002Multiscale analysis of waves reflected by complex interfaces: Basic principles and experimentsJ. Geophys. Res.107116CrossRefGoogle Scholar
  29. Lewis, K.B., Carter, L., Davey, F.J. 1994The opening of Cook Strait: Interglacial tidal scour and aligning basins at a subduction to transform plate EdgeMar. Geol.116293312CrossRefGoogle Scholar
  30. Lurton X., Dugelay S., Augustin J.M., 1994, Analysis of multibeam echo-sounder signals from the deep seafloor. Proc. IEEE OCEANS’94, 213–218.Google Scholar
  31. Mackenzie, K.V. 1981Nine-term equation for sound speed in the oceansJ. Acoust. Soc. Am.70807812Google Scholar
  32. Mitchell, N.C., Somers, M.L. 1989Quantitative backscatter measurements with a long range side-scan sonarIEEE J. Oceanic Eng.14368374CrossRefGoogle Scholar
  33. Mitchell, N.C. 1993A model for attenuation of backscatter due to sediment accumulations and its application to determine sediment thickness with GLORIA sidescan sonarJ. Geophys. Res.982247722493Google Scholar
  34. Mitchell, N.C. 1995Representing backscatter fluctuations with a PDF convolution equation, and its applications to study backscatter variability in side-scan sonar imagesIEEE Trans. Geosci. Remote Sens.3313281331CrossRefGoogle Scholar
  35. Mitchell, N.C. 1996Processing and analysis of Simrad multibeam sonar dataMar. Geophys. Res.18729739CrossRefGoogle Scholar
  36. Richardson, M.D., Lavoie, D.L., Briggs, K.B. 1997Geoacoustic and physical properties of carbonate sediments of the Lower Florida KeysGeo-Marine Lett.17316324CrossRefGoogle Scholar
  37. Ryan, W.B.F., Flood, R.D. 1996Side-looking sonar backscatter response at dual frequenciesMar. Geophys. Res.18689705CrossRefGoogle Scholar
  38. Simrad, 1997, Simrad EM300 multibeam echo sounder. Product Description: Krongsberg Simrad.Google Scholar
  39. Somers, M.L., Stubbs, A.R. 1984Sidescan sonarIEEE Proc.131243256Google Scholar
  40. Stanton, T.K. 1985Volume scattering: Echo peak PDFJ. Acoust. Soc. Am.7713581366Google Scholar
  41. Talukdar, K.K., Tyce, R.C., Clay, C.S. 1995Interpretation of sea beam backscatter data collected at the Laurentian Fan off Nova Scotia using acoustic backscatter theoryJ. Acoust. Soc. Am.9715451558Google Scholar
  42. Urgeles, R., Locat, J., Schmitt, T., Hughes Clarke, J.E. 2002The July 1996 flood deposit in the Saguenay Fjord, Quebec, Canada: Implications for sources of spatial and temporal backscatter variationsMar. Geol.1844160CrossRefGoogle Scholar
  43. Urick R.J., 1967, Principles of Underwater Sound for Engineers, Mc Graw-Hill, p. 342.Google Scholar
  44. Urick R.J., 1983, Principles of Underwater Sound, Mc Graw-Hill, p. 422.Google Scholar
  45. Wright, I.C. 2001In situ Modification of modern submarine hyaloclastic/pyroclastic deposits by oceanic currents: An example from the Southern Kermadec arc (SW Pacific)Mar. Geol.172287307CrossRefGoogle Scholar
  46. Wright, I.C., Stoffers, P., Hannington, M., Ronde, C.E.J., Herzig, P., Smith, I.E.M., Browne, P.R.L. 2002Towed-camera investigations of shallow–intermediate water-depth submarine stratavolcanoes of the southern Kermadec arcMar. Geol.185207218CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Yves Le Gonidec
    • 1
    • 2
  • Geoffroy Lamarche
    • 1
  • Ian C. Wright
    • 1
  1. 1.National Institute of Water and Atmospheric Research (NIWA)WellingtonNew Zealand
  2. 2.Géosciences AzurVillefranche-sur-MerFrance

Personalised recommendations