Advertisement

An arbitrary multi-node extended multiscale finite element method for thermoelastic problems with polygonal microstructures

  • Yonggang Zheng
  • Hanbo Zhang
  • Jun Lv
  • Hongwu ZhangEmail author
Article
  • 69 Downloads

Abstract

A coupling extended multiscale finite element method (P-CEMsFEM) is developed for the numerical analysis of thermoelastic problems with polygonal microstructures. In this method, the polygonal microstructures are effectively represented by polygonal coarse-grid elements and the corresponding numerical base functions are constructed for the temperature and displacement fields, respectively, by a unified method with the corresponding equivalent matrices. To reflect the interaction of deformations among different directions, the additional coupling terms are introduced into the numerical base functions. In addition, an improved downscaling technique is proposed to directly obtain the satisfying microscopic solutions in the P-CEMsFEM. Moreover, an arbitrary multi-node strategy is developed to further improve the computational accuracy for the two-dimensional thermoelastic problems. Two types of representative numerical examples are presented. The first type examples are given to testify the proposed multiscale method and the results indicate that the P-CEMsFEM has high accuracy and efficiency for the thermoelastic analysis of heterogeneous multiphase materials and structures. The second type examples testify that the P-CEMsFEM is applicable for practical engineering problems.

Keywords

Extended multiscale finite element method Thermoelastic analysis Polygonal coarse-grid element Heterogeneous multiphase material Multi-node strategy Improved downscaling technique 

Notes

Acknowledgements

The supports from the National Natural Science Foundation of China (Nos. 11772082, 11672062 and 11772083), the LiaoNing Revitalization Talents Program (No. XLYC1807193), the 111 Project (No. B08014) and Fundamental Research Funds for the Central Universities (Nos. DUT17ZD307 and DUT17LK26) are gratefully acknowledged.

References

  1. Alzina, A., Toussaint, E., Beakou, A.: Multiscale modeling of the thermoelastic behavior of braided fabric composites for cryogenic structures. Int. J. Solids Struct. 44(21), 6842–6859 (2007)zbMATHCrossRefGoogle Scholar
  2. Babuska, I., Osborn, J.E.: Generalized finite-element methods—their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20(3), 510–536 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  3. Babuška, I., Caloz, G., Osborn, J.E.: Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31(4), 945–981 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  4. Budarapu, P.R., Gracie, R., Bordas, S.P.A., Rabczuk, T.: An adaptive multiscale method for quasi-static crack growth. Comput. Mech. 53(6), 1129–1148 (2013)CrossRefGoogle Scholar
  5. Budarapu, P.R., Gracie, R., Yang, S.W., Zhuang, X.Y., Rabczuk, T.: Efficient coarse graining in multiscale modeling of fracture. Theor. Appl. Fract. Mech. 69, 126–143 (2014)CrossRefGoogle Scholar
  6. Devries, F., Dumontet, H., Duvaut, G., Lene, F.: Homogenization and damage for composite structures. Int. J. Numer. Methods Eng. 27(2), 285–298 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  7. Efendiev, Y., Pankov, A.: Numerical homogenization of nonlinear random parabolic operators. Multiscale Model. Simul. 2(2), 237–268 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  8. Efendiev, Y., Hou, T.Y., Ginting, V.: Multiscale finite element methods for nonlinear problems and their applications. Commun. Math. Sci. 2(4), 553–589 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  9. Fish, J., Yu, Q., Shek, K.: Computational damage mechanics for composite materials based on mathematical homogenization. Int. J. Numer. Methods Eng. 45(11), 1657–1679 (1999)zbMATHCrossRefGoogle Scholar
  10. Ghosh, S., Mallett, R.: Voronoi cell finite elements. Comput. Struct. 50(1), 33–46 (1994)zbMATHCrossRefGoogle Scholar
  11. Ghosh, S., Mukhopadhyay, S.N.: A material based finite-element analysis of heterogeneous media involving Dirichlet tessellations. Comput. Methods Appl. Mech. Eng. 104(2), 211–247 (1993)zbMATHCrossRefGoogle Scholar
  12. Goupee, A.J., Vel, S.S.: Multiscale thermoelastic analysis of random heterogeneous materials: part II: direct micromechanical failure analysis and multiscale simulations. Comput. Mater. Sci. 48(1), 39–53 (2010a)CrossRefGoogle Scholar
  13. Goupee, A.J., Vel, S.S.: Transient multiscale thermoelastic analysis of functionally graded materials. Compos. Struct. 92(6), 1372–1390 (2010b)CrossRefGoogle Scholar
  14. Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  15. Kouznetsova, V.G.: Computational homogenization for the multi-scale analysis of multi-phase materials. Ph.D. thesis, Eindhoven University of Technology, Eindhoven (2002)Google Scholar
  16. Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro–macro modeling of heterogeneous materials. Comput. Mech. 27(1), 37–48 (2001)zbMATHCrossRefGoogle Scholar
  17. Li, H., Zhang, H.W., Zheng, Y.G.: A coupling extended multiscale finite element method for dynamic analysis of heterogeneous saturated porous media. Int. J. Numer. Methods Eng. 104(1), 18–47 (2015)MathSciNetzbMATHGoogle Scholar
  18. Liu, H., Zhang, H.W.: A p-adaptive multi-node extended multiscale finite element method for 2D elastostatic analysis of heterogeneous materials. Comput. Mater. Sci. 73, 79–92 (2013)CrossRefGoogle Scholar
  19. Lv, J., Zhang, H.W., Yang, D.S.: Multiscale method for mechanical analysis of heterogeneous materials with polygonal microstructures. Mech. Mater. 56, 38–52 (2013)CrossRefGoogle Scholar
  20. Lv, J., Liu, H., Zhang, H.W., Liu, L.: Multiscale method for geometrical nonlinear analysis of fluid actuated cellular structures with arbitrary polygonal microstructures. J. Aerosp. Eng. 29(4), 04015082 (2016)CrossRefGoogle Scholar
  21. Ozdemir, I., Brekelmans, W.A.M., Geers, M.G.D.: Computational homogenization for heat conduction in heterogeneous solids. Int. J. Numer. Methods Eng. 73(2), 185–204 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  22. Papanicolau, G., Bensoussan, A., Lions, J.L.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)Google Scholar
  23. Rabizadeh, E., Bagherzadeh, A.S., Rabczuk, T.: Adaptive thermo-mechanical finite element formulation based on goal-oriented error estimation. Comput. Mater. Sci. 102, 27–44 (2015)CrossRefGoogle Scholar
  24. Rabizadeh, E., Bagherzadeh, A.S., Rabczuk, T.: Goal-oriented error estimation and adaptive mesh refinement in dynamic coupled thermoelasticity. Comput. Struct. 173, 187–211 (2016)CrossRefGoogle Scholar
  25. Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput. Methods Appl. Mech. Eng. 155(1–2), 181–192 (1998)zbMATHCrossRefGoogle Scholar
  26. Suquet, P.M.: Local and global aspects in the mathematical theory of plasticity. In: Sawczuk, A., Bianchi, G. (eds.) Plasticity Today: Modelling, Methods and Applications, pp. 279–309. Elsevier, London (1985)Google Scholar
  27. Talebi, H., Silani, M., Bordas, S.P., Kerfriden, P., Rabczuk, T.: A computational library for multiscale modeling of material failure. Comput. Mech. 53(5), 1047–1071 (2014)MathSciNetCrossRefGoogle Scholar
  28. Talebi, H., Silani, M., Rabczuk, T.: Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Adv. Eng. Softw. 80, 82–92 (2015)CrossRefGoogle Scholar
  29. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  30. Tamma, K.K., Namburu, R.R.: Computational approaches with applications to non-classical and classical thermomechanical problems. Appl. Mech. Rev. 50(9), 514–551 (1997)CrossRefGoogle Scholar
  31. Tarada, K.: Nonlinear Homogenization Method for Practical Applications. Computational Methods in Micromechanics, pp. 1–16. ASME, New York (1995)Google Scholar
  32. Temizer, I., Wriggers, P.: Homogenization in finite thermoelasticity. J. Mech. Phys. Solids 59(2), 344–372 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  33. Toledano, A., Murakami, H.: A high-order mixture model for periodic particulate composites. Int. J. Solids Struct. 23(7), 989–1002 (1987)zbMATHCrossRefGoogle Scholar
  34. Vel, S.S., Goupee, A.J.: Multiscale thermoelastic analysis of random heterogeneous materials. Comput. Mater. Sci. 48(1), 22–38 (2010)CrossRefGoogle Scholar
  35. Yang, D., Zhang, S., Zhang, H.: Thermal stress analysis of functionally graded material based on coupling extended multiscale finite element method. Acta Mater. Compos. Sin. 32(4), 1107–1117 (2015)Google Scholar
  36. Zhang, H.W., Wang, H., Wang, J.B.: Parametric variational principle based elastic–plastic analysis of materials with polygonal and Voronoi cell finite element methods. Finite Elem. Anal. Des. 43(3), 206–217 (2007a)CrossRefGoogle Scholar
  37. Zhang, H.W., Zhang, S., Bi, J.Y., Schrefler, B.A.: Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach. Int. J. Numer. Methods Eng. 69(1), 87–113 (2007b)MathSciNetzbMATHCrossRefGoogle Scholar
  38. Zhang, H.W., Fu, Z.D., Wu, J.K.: Coupling multiscale finite element method for consolidation analysis of heterogeneous saturated porous media. Adv. Water. Res. 32(2), 268–279 (2009)CrossRefGoogle Scholar
  39. Zhang, H.W., Lv, J., Zheng, Y.G.: A new multiscale computational method for mechanical analysis of closed liquid cell materials. Cmes-Comp. Model. Eng. 68(1), 55–93 (2010a)Google Scholar
  40. Zhang, H.W., Wu, J.K., Fu, Z.D.: Extended multiscale finite element method for elasto-plastic analysis of 2D periodic lattice truss materials. Comput. Mech. 45(6), 623–635 (2010b)zbMATHCrossRefGoogle Scholar
  41. Zhang, H.W., Wu, J.K., Lu, J., Fu, Z.D.: Extended multiscale finite element method for mechanical analysis of heterogeneous materials. Acta. Mech. Sin.-prc. 26(6), 899–920 (2010c)MathSciNetzbMATHCrossRefGoogle Scholar
  42. Zhang, H.W., Liu, H., Wu, J.K.: A uniform multiscale method for 2D static and dynamic analyses of heterogeneous materials. Int. J. Numer. Methods Eng. 93(7), 714–746 (2013a)MathSciNetzbMATHCrossRefGoogle Scholar
  43. Zhang, S., Yang, D.S., Zhang, H.W., Zheng, Y.G.: Coupling extended multiscale finite element method for thermoelastic analysis of heterogeneous multiphase materials. Comput. Struct. 121, 32–49 (2013b)CrossRefGoogle Scholar
  44. Zhang, H.W., Lu, M.K., Zheng, Y.G., Zhang, S.: General coupling extended multiscale FEM for elasto-plastic consolidation analysis of heterogeneous saturated porous media. Int. J. Numer. Anal. Methods 39(1), 63–95 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.International Research Center for Computational Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering MechanicsDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.School of Aeronautics and AstronauticsDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations