Nonlinear multibody dynamics and finite element modeling of occupant response: part II—frontal and lateral vehicle collisions

  • Mo Gabriel Shi
  • Mohamed T. Z. Hassan
  • S. A. MeguidEmail author


Due to the increased number of fatalities and injuries in motor vehicle accidents, it is crucial to study the kinematic and kinetic occupant response during collisions, specifically the head and neck response due to their vulnerable nature. In Part I we have addressed rear end collisions. In Part II we examine occupant response in frontal and lateral collisions. Two multibody dynamics models of the cervical spine of the 50th percentile male were developed and validated. The cervical spine was modeled as a series of rigid links connected through single and two degrees of freedom viscoelastic joints. In addition, finite element simulations of two compact sedan vehicle were conducted to capture realistic crash acceleration of the driver seat in frontal and lateral collision scenarios. Furthermore, finite element simulations were performed to capture the kinematic and kinetic response of a seated restrained male occupant subjected to the realistic seat accelerations in frontal and lateral collisions. Finally, the possibility of injury in frontal, lateral and rear collisions was evaluated. The evaluation of ligament injury risk shows high risk of injury at the interspinous ligament in frontal collision, at the anterior longitudinal ligament in rear collision and at the near-side capsular ligament in lateral collision. The highest vertebral fracture risks were found at the mid- and lower cervical spine in rear and lateral collisions. The outcomes of this work provide a better understanding of occupant injury mechanism during frontal, lateral and rear collisions which is essential to enhancing motor vehicle safety.


Nonlinear Finite element Multibody dynamics Occupant kinematics Vehicular collision 



  1. Anderst, W., Baillargeon, E., Donaldson, W., Lee, J., Kang, J.: Motion path of the instant center of rotation in the cervical spine during in vivo dynamic flexion-extension. Spine (Phila. Pa. 1976) 38, E594–E601 (2013). CrossRefGoogle Scholar
  2. Arun, M.W., Humm, J.R., Yoganandan, N., Pintar, F.A.: Biofidelity evaluation of a restrained whole body finite element model under frontal impact using kinematics data from PMHS sled tests. In: IRCOBI Conference Proceedings (No. IRC-15-69) (2015)Google Scholar
  3. Ash, J., Shaw, C.G., Lessley, D., Crandall, J.: PMHS restraint and support surface forces in simulated frontal crashes. JSAE Ann. Congr. 4, 41–46 (2013)Google Scholar
  4. Ash, J., Sherwood, C., Abdelilah, Y., Crandall, J., Parent, D., Kallieris, D.: Comparison of anthropomorphic test dummies with a pediatric cadaver. In: Proceedings of the 21st International Technical Conference on the Enhanced Safety of Vehicles (ESV) (2009)Google Scholar
  5. Augenstein, J., Bowen, J., Perdeck, E., Singer, M., Stratton, J., Horton, T., Rao, A.: Injury patterns in near-side collisions. SAE 2000 World Congress (2000).
  6. Bayraktar, H.H., Morgan, E.F., Niebur, G.L., Morris, G.E., Wong, E.K., Keaveny, T.M.: Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 37, 27–35 (2004). CrossRefGoogle Scholar
  7. Beeman, S.M., Kemper, A.R., Madigan, M.L., Franck, C.T., Loftus, S.C.: Occupant kinematics in low-speed frontal sled tests: human volunteers, hybrid III ATD, and PMHS. Accid. Anal. Prev. 47, 128–139 (2012). CrossRefGoogle Scholar
  8. Bhardwaj, A., Gupta, A., Kwong M.T.: Mechanical response of femur bone to bending load using finite element method. In: 2014 Recent Advances in Engineering and Computational Sciences (RAECS). pp. 1–4. IEEE (2014)Google Scholar
  9. Bose, D., Crandall, J.R.: Influence of active muscle contribution on the injury response of restrained car occupants. Ann. Adv. Automot. Med. Assoc. Adv. Automot. Med. Annu. Sci. Conf. 52, 61–72 (2008)Google Scholar
  10. Bose, D., Crandall, J.R., Untaroiu, C.D., Maslen, E.H.: Influence of pre-collision occupant parameters on injury outcome in a frontal collision. Accid. Anal. Prev. 42, 1398–1407 (2010). CrossRefGoogle Scholar
  11. Boström, O., Svensson, M.Y., Aldman, B., Hansson, H.A., Haland, Y., Lövsund, P., Seeman, T., Suneson, A., Säljö, A., Örtengren, T.: A new neck injury criterion candidate—based on injury findings in the cervical spinal ganglia after experimental neck extension trauma. In: Proceedings of 1996 International IRCOBI Conference on Biomechanics Impact, Sept 11–13, 1996, Dublin, Ireland, pp. 123–126 (1996)Google Scholar
  12. Boutroy, S., Rietbergen, B. Van, Sornay‐Rendu, E., Munoz, F., Bouxsein, M.L., Delmas, P.D.: Finite element analysis based on in vivo HR‐pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J. Bone Miner. Res. 23, 392–399 (2008)CrossRefGoogle Scholar
  13. Buzemanjewkes, D.G., Viano, D.C., Lovsund, P.: A multi-body integrated vehicle-occupant model for compatibility studies in frontal crashes. J. Crash Prev. Inj. Control 1, 143–154 (1999).
  14. Camacho, D.L., Nightingale, R.W., Robinette, J.J., Vanguri, S.K., Coates, D.J., Myers, B.S.: Experimental flexibility measurements for the development of a computational head-neck model validated for near-vertex head impact. SAE Tech. Pap. 97334, 473–486 (1997). Google Scholar
  15. Carter, D.R., Caler, W.E., Spengler, D.M., Frankel, V.H.: Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. Acta Orthop. Scand. 52, 481–490 (1981). CrossRefGoogle Scholar
  16. Castro, W.H.M., Schilgen, M., Meyer, S., Weber, M., Peuker, C., Wörtler, K.: Do “whiplash injuries” occur in low-speed rear impacts? Eur. Spine J. 6, 366–375 (1997). CrossRefGoogle Scholar
  17. Cezayirlioglu, H., Bahniuk, E., Davy, D.T., Heiple, K.G.: Anisotropic yield behavior of bone under combined axial force and torque. J. Biomech. 18, 61–69 (1985). CrossRefGoogle Scholar
  18. Chang, C.-Y., Rupp, J.D., Reed, M.P., Hughes, R.E., Schneider, L.W.: Predicting the effects of muscle activation on knee, thigh, and hip injuries in frontal crashes using a finite-element model with muscle forces from subject testing and musculoskeletal modeling. Stapp Car Crash J. 53, 291–328 (2009)Google Scholar
  19. Choi, H., Sah, S., Lee, B., Cho, H., Kang, S., Mun, M., Lee, I., Lee, J.: Experimental and numerical studies of muscular activations of bracing occupant. In: The International Technical Conference on the Enhanced Safety of Vehicles (2005)Google Scholar
  20. Combset, J.J.: Current statues and future plans of the ghbmc (global human body models consortium). In: 6th International Symposium: Human Modeling and Simulation in Automotive Engineering, Heidelberg, Germany (2016)Google Scholar
  21. Cummings, J.R., Osterholt, G.D., Van Calhoun, D., Biller, B.A.: Occupant Friction Coefficients on Various Combinations of Seat and Clothing. In: SAE Technical Paper 2009-01-1672. p. 11 (2009)Google Scholar
  22. Davidsson, J.: BioRID II final report (1999)Google Scholar
  23. Deng, Y.-C., Li, X., Liu, Y.: Modeling of the human cervical spine using finite element techniques. In: 1999 SAE International Congress and Exposition, Detroit, MI (1999)Google Scholar
  24. Dibb, A.T., Cutcliffe, H.C., Luck, J.F., Cox, C.A., Myers, B.S., Bass, C.R., Arbogast, K.B., Seacrist, T., Nightingale, R.W.: Pediatric head and neck dynamics in frontal impact: analysis of important mechanical factors and proposed neck performance corridors for 6- and 10-year-old ATDs. Traffic Inj. Prev. 15, 386–394 (2014). CrossRefGoogle Scholar
  25. Dvorak, J., Froehlich, D., Penning, L., Baumgartner, H., Panjabi, M.M.: Functional radiographic diagnosis of the cervical spine: flexion/extension. Spine (Phila. Pa. 1976) 13, 748–755 (1988)CrossRefGoogle Scholar
  26. Ewing, C.L., Thomas, D.J.: Human head and neck response to impact acceleration. No. NAMRL-MONOGRAPH-21. Naval Aerospace Medical Research Lab, Pensacola, FL (1972)Google Scholar
  27. Farmer, C.M., Braver, E.R., Mitter, E.L.: Two-vehicle side impact crashes: the relationship of vehicle and crash characteristics to injury severity. Accid. Anal. Prev. 29, 399–406 (1997). CrossRefGoogle Scholar
  28. Forman, J., Lessley, D., Kent, R., Bostrom, O., Pipkorn, B.: Whole-body kinematic and dynamic response of restrained PMHS in frontal sled tests. Stapp Car Crash J. 50, 299–336 (2006). Google Scholar
  29. Forman, J.L., Kent, R.W., Mroz, K., Pipkorn, B., Bostrom, O., Segui-Gomez, M.: Predicting rib fracture risk with whole-body finite element models: development and preliminary evaluation of a probabilistic analytical framework. Ann. Adv. Automot. Med. 56, 109–124 (2012)Google Scholar
  30. Foster, J.K., Kortge, J.O., Wolanin, M.J.: Hybrid III—a biomechanically-based crash test dummy. SAE Technical Paper 770938 (1977).
  31. Gayzik, F.S., Moreno, D.P., Vavalle, N.A., Rhyne, A.C., Stitzel, J.D.: Development of the global human body models consortium mid-sized male full body model. In: International Workshop on Human Subjects for Biomechanical Research, vol. 39 (2011)Google Scholar
  32. Gershon Cohen, J., Budin, E., Glauser, F.: Whiplash fractures of cervicodorsal spinous processes: resemblance to shoveler’s fracture. J. Am. Med. Assoc. 155, 560–561 (1954). CrossRefGoogle Scholar
  33. Goel, V.K., Clark, C.R., Gallaes, K., Liu, Y.K.: Moment-rotation relationships of the ligamentous occipito-atlanto-axial complex. J. Biomech. (1988). Google Scholar
  34. Grauer, J.N., Panjabi, M.M., Cholewicki, J., Nibu, K., Dvorak, J.: Whiplash produces and S-shaped curvature of the neck with hyperextension at lower levels. Spine (Phila. Pa. 1976). 22, 2489–2494 (1997)Google Scholar
  35. Happee, R., Hoofman, M., Kroonenberg, Van Den, J., Morsink, P., Wismans, J.: A mathematical human body model for frontal and rearward seated automotive impact loading. Engineering (1998).
  36. Hassan, M.T.Z., Meguid, S.A.: Effect of seat belt and head restraint on occupant’s response during rear-end collision. Int. J. Mech. Mater. Des. 14, 231–242 (2018). CrossRefGoogle Scholar
  37. Hell, W., Langwieder, K., Walz, F., Muser, M., Kramer, M., Hartwig, E.: Consequences for seat design due to read end accident analysis, sled tests, and possible test criteria for reducing cervical spine injuries after rear end collision. In: IRCOBI Conference on the Biomechanics of Impact. pp. 243–259 (1999)Google Scholar
  38. Holzer, G., von Skrbensky, G., Holzer, L.A., Pichl, W.: Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J. Bone Miner. Res. 24, 468–474 (2009). CrossRefGoogle Scholar
  39. Hoover, J., Meguid, S.A.: Analytical viscoelastic modelling of whiplash using lumped- parameter approach. Int. J. Mech. Mater. Des. 11, 125–137 (2015). CrossRefGoogle Scholar
  40. Huang, Y., King, A., Cavanaugh, J.: A MADYMO model of near-side human occupants in side impacts. J. Biomech. Eng. 116, 228–235 (1994)CrossRefGoogle Scholar
  41. Ivancic, P.C., Ito, S., Panjabi, M.M., Pearson, A.M., Tominaga, Y., Wang, J.-L., Gimenez, S.E.: Intervertebral neck injury criterion for simulated frontal impacts. Traffic Inj. Prev. 6, 175–184 (2005). CrossRefGoogle Scholar
  42. Katagiri, M., Zhao, J., Kerrigan, J., Kent, R., Forman, J.: Comparison of whole-body kinematic behaviour of the GHBMC occupant model to PMHS in far-side sled tests. In: 2016 IRCOBI Conference Proceedings of International Research Council on Biomechanics of Injury (2016)Google Scholar
  43. Kent, R.W., Forman, J.L., Bostrom, O.: Is there really a “cushion effect”?: A biomechanical investigation of crash injury mechanisms in the obese. Obesity 18, 749–753 (2010). CrossRefGoogle Scholar
  44. Keon, T.: Alternative approaches to occupant response evaluation in frontal impact crash testing. SAE Int. J. Transp. Saf. 4, 2016-01-1540 (2016).
  45. Kotani, Y., Abumi, K., Ito, M., Minami, A.: Cervical spine injuries associated with lateral mass and facet joint fractures: new classification and surgical treatment with pedicle screw fixation. Eur. Spine J. 14, 69–77 (2005). CrossRefGoogle Scholar
  46. Krafft, M., Kullgren, A., Ydenius, A., Tingvall, C.: Influence of crash pulse characteristics on whiplash associated disorders in rear impacts-crash recording in real life crashes. Traffic Inj. Prev. 3, 141–149 (2002). CrossRefGoogle Scholar
  47. Kumar, S., Narayan, Y., Amell, T.: Analysis of low velocity frontal impacts. Clin. Biomech. 18, 694–703 (2003). CrossRefGoogle Scholar
  48. Kuppa, S., Wang, J., Haffner, M., Eppinger, R.: Lower extremity injuries and associated injury criteria. 17th ESV Conference, vol. 4, pp. 1–15 (2001)Google Scholar
  49. Lee, C., Kim, K.S., Rogers, L.F.: Triangular cervical vertebral body fractures: diagnostic significance. Am. J. Roentgenol. 138, 1123–1132 (1982). CrossRefGoogle Scholar
  50. Liu, Y.K., Krieger, K.W., Njus, G., Ueno, K., Connors, M.P., Wakano, K., Thies, D.: Cervical spine stiffness and geometry of the young human male. New Orleans, LA (1982)Google Scholar
  51. Lopez-Valdes, F.J., Riley, P.O., Lessley, D.J., Arbogast, K.B., Seacrist, T., Balasubramanian, S., Maltese, M., Kent, R.: The six degrees of freedom motion of the human head, spine, and pelvis in a frontal impact. Traffic Inj. Prev. 15, 294–301 (2014). CrossRefGoogle Scholar
  52. van Lopik, D.W., Acar, M.: Development of a multi-body computational model of human head and neck. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 221, 175–197 (2007).
  53. Lowrance, E.W., Latimer, H.B.: Weights and variability of components of the human vertebral column. Anat. Rec. 159, 83–88 (1967). CrossRefGoogle Scholar
  54. Marzougui, D., Samaha, R.R., Cui, C., Kan, C.-D. (Steve): Extended validation of the finite element model for the 2010 Toyota Yaris Passenger Sedan (2012)Google Scholar
  55. Meijer, R., Elrofai, H., Broos, J.: Evaluation of an active multi-body human model for braking and frontal crash events. In: 23rd International Technical Conference on the Enhanced Safety of Vehicles, pp. 1–12 (2013)Google Scholar
  56. Michaelson, J., Forman, J., Kent, R., Kuppa, S.: Rear seat occupant safety: kinematics and injury of PMHS restrained by a standard 3-point belt in frontal crashes. Stapp Car Crash J. 52, 295–325 (2008). Google Scholar
  57. Mordaka, J., Meijer, R., van Rooij, L., Żmijewska, A.E: Validation of a finite element human model for prediction of rib fractures. SAE Tech. Pap. (2007).
  58. Oda, T., Panjabi, M.M., Crisco, J.J., Bueff, H.U., Grob, D., Dvorak, J.: Role of tectorial membrane in the stability of the upper cervical spine. Clin. Biomech. 7, 201–207 (1992). CrossRefGoogle Scholar
  59. Ono, K., Ejima, S.: Biomechanical response of head/neck/torso and cervical vertebral motion to lateral impact loading on the shoulders of volunteers. In: The 20th ESV Conference Proceedings (2007)Google Scholar
  60. Ono, K., Kanno, M.: Influences of the physical parameters on the risk to neck injuries in low impact speed rear-end collisions. Accid. Anal. Prev. 28, 493–499 (1996). CrossRefGoogle Scholar
  61. Ooi, S.S., Wong, S.V., Radin Umar, R.S., Azhar, A.A., Yeap, J.S., Ahmad Megat, M.M.H.: Mechanisms of cervical spine injuries for non-fatal motorcycle road crash. Med. J. Malays. 59, 146–152 (2004)Google Scholar
  62. Ordway, N.R., Seymour, R.J., Donelson, R.G., Hojnowski, L.S., Edwards, W.T.: Cervical flexion, extension, protrusion, and retraction. Spine (Phila. Pa. 1976) 24, 240–247 (1999).
  63. Östh, J., Mendoza-Vazquez, M., Linder, A., Svensson, M.Y., Brolin, K.: The VIVA OpenHBM finite element 50th percentile female occupant model: whole body model development and kinematic validation. In: IRCOBI Conference 2017, pp. 443–466. Antwerp, Belgium (2017)Google Scholar
  64. Panjabi, M.M., Crisco, J.J., Vasavada, A., Oda, T., Cholewicki, J., Nibu, K., Shin, E.: Mechanical properties of the human cervical spine as shown by three-dimensional load–displacement curves. Spine (Phila. Pa. 1976) 26, 2692–2700 (2001).
  65. Panjabi, M.M., Ito, S., Ivancic, P.C., Rubin, W.: Evaluation of the intervertebral neck injury criterion using simulated rear impacts. J. Biomech. 38, 1694–1701 (2005). CrossRefGoogle Scholar
  66. Panjabi, M.M., Wang, J.L., Delson, N.: Neck injury criterion based on intervertebral motions and its evaluation using an instrumented neck dummy. In: 1999 International IRCOBI Conference on the Biomechanics of Impact, pp. 179–190 (1999)Google Scholar
  67. Panzer, M.B., Fice, J.B., Cronin, D.S.: Cervical spine response in frontal crash. Med. Eng. Phys. 33, 1147–1159 (2011). CrossRefGoogle Scholar
  68. Park, G., Kim, T., Crandall, J.R., Arregui-Dalmases, C., Luzón Narro, B.J.: Comparison of kinematics of GHBMC to PMHS on the side impact condition. Proc. IRCOBI Conf. 2013(1), 368–379 (2013)Google Scholar
  69. Pintar, F.A., Yoganandan, N., Maiman, D.J.: Lower cervical spine loading in frontal sled tests using inverse dynamics: potential applications for lower neck injury criteria. Stapp Car Crash J. 54, 133 (2010). Google Scholar
  70. Plaga, J.A., Albery, C., Boehmer, M., Goodyear, C., Thomas, G.: Design and development of anthropometrically correct head forms for joint strike fighter ejection seat testing. Dayton (2005)Google Scholar
  71. Pramudita, J.A., Ono, K., Ejima, S., Kaneoka, K., Shiina, I., Ujihashi, S.: Head/neck/torso behavior and cervical vertebral motion of human volunteers during low speed rear impact: mini-sled tests with mass production car seat. In: 2007 International IRCOBI Conference on the Biomechanics of Injury, pp. 201–217. Maastricht (2007)Google Scholar
  72. Quinn, K.P., Winkelstein, B.A.: Cervical facet capsular ligament yield defines the threshold for injury and persistent joint-mediated neck pain. J. Biomech. 40, 2299–2306 (2007). CrossRefGoogle Scholar
  73. Teng, T.-L., Chang, F.-A., Liu, Y.-S., Peng, C.-P.: Analysis of dynamic response of vehicle occupant in frontal crash using multibody dynamics method. Math. Comput. Model. 48, 1724–1736 (2008). MathSciNetCrossRefzbMATHGoogle Scholar
  74. The Cervical Spine Research Society Editorial Committee: The Cervical Spine. J. B. Lippincott Company (1989)Google Scholar
  75. Thunnissen, J., Wismans, J.: Human volunteer head–neck response in frontal flexion: a new analysis. SAE Int. 952721, 439–460 (1995). Google Scholar
  76. Tomaszewski, P.K., Verdonschot, N., Bulstra, S.K., Verkerke, G.J.: A comparative finite-element analysis of bone failure and load transfer of osseointegrated prostheses fixations. Ann. Biomed. Eng. 38, 2418–2427 (2010). CrossRefGoogle Scholar
  77. Turkovich, M., Van Roosmalen, L.: A preliminary study on the effects of obesity on occupant response in frontal impact. In: RESNA Annual Conference, Las Vegas (2010)Google Scholar
  78. Viano, D.C., Parenteau, C.S.: Injury risks in frontal crashes by delta V and body region with focus on head injuries in low-speed collisions. Traffic Inj. Prev. 11, 382–390 (2010). CrossRefGoogle Scholar
  79. White, A.A., Panjabi, M.M.: The basic kinematics of the human spine. Spine (Phila. Pa. 1976) 3, 12–20 (1978).
  80. White, A.A., Panjabi, M.M.: Clinical Biomechanics of the Spine. J.B. Lippincott Company, Philadelphia (1990)Google Scholar
  81. Winkelstein, B.A., Nightingale, R.W., Richardson, W.J., Myers, B.S.: The cervical facet capsule and its role in whiplash injury a biomechanical investigation. Spine 25, 1238–1246 (2000)CrossRefGoogle Scholar
  82. Wittek, A., Kajzer, J., Haug, E., Ono, K.: Finite element modeling of the muscle effects on kinematic responses of head–neck complex in frontal impact at high speed. JSME Int J. Ser. C 44, 379–388 (2001). CrossRefGoogle Scholar
  83. World Health Organization: Global Status Report on Road Safety 2015 Summary. Geneva(2015)Google Scholar
  84. Yoganandan, N., Pintar, F., Kumaresan, S., Elhagediab, A.: Biomechanical assessment of human cervical spine ligaments. In: 42nd Stapp Car Crash Conference (1998)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Mechanics and Aerospace Design LabUniversity of TorontoTorontoCanada

Personalised recommendations