Advertisement

Size-dependent nonlinear vibration of an electrostatic nanobeam actuator considering surface effects and inter-molecular interactions

  • 487 Accesses

  • 2 Citations

Abstract

In this paper, the size-dependent nonlinear vibration of an electrostatic nanobeam actuator is investigated based on the nonlocal strain gradient theory, incorporating surface effects. A comprehensive model regarding the von Karman geometrical nonlinearity, inter-molecular forces and both components of the electrostatic excitation (AC and DC) is proposed to explore the system behavior near the primary resonance. Utilizing Hamilton’s principle, the nonlinear equation of motion of the system is derived. The natural frequency and dynamic response of the system, comprising frequency and force response diagrams, are obtained analytically via multiple scales technique in conjunction with the differential quadrature method and validated through a numerical approach. The roles of the nonlocal and strain gradient parameters, surface elasticity, inter-molecular forces and quality factor on the system oscillations are examined. The acquired results unveiled that the size-dependent parameters can significantly displace the multi-valued portions and instability thresholds of the dynamical response. Furthermore, it is deduced that the surface effects induce the stiffness hardening of the nanobeam, whereas the inter-molecular forces impose the stiffness softening effect.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)

  2. Azizi, S., Ghazavi, M.R., Rezazadeh, G., Ahmadian, I., Cetinkaya, C.: Tuning the primary resonances of a micro resonator, using piezoelectric actuation. Nonlinear Dyn. 76(1), 839–852 (2014)

  3. Bert, C.W., Malik, M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49(1), 1–28 (1996)

  4. Chen, X., Meguid, S.: Snap-through buckling of initially curved microbeam subject to an electrostatic force. Proc. R. Soc. A 471(2177), 20150072 (2015)

  5. Chen, X., Meguid, S.: Asymmetric bifurcation of thermally and electrically actuated functionally graded material microbeam. Proc. R. Soc. A 472(2186), 20150597 (2016)

  6. Chen, X., Meguid, S.: Dynamic behavior of micro-resonator under alternating current voltage. Int. J. Mech. Mater. Des. 13(4), 481–497 (2017a)

  7. Chen, X., Meguid, S.: Nonlinear vibration analysis of a microbeam subject to electrostatic force. Acta Mech. 228(4), 1343–1361 (2017b)

  8. Dequesnes, M., Rotkin, S., Aluru, N.: Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology 13(1), 120 (2002)

  9. Ebrahimi, F., Barati, M.R.: Damping vibration behavior of visco-elastically coupled double-layered graphene sheets based on nonlocal strain gradient theory. Microsyst. Technol. 24(3), 1643–1658 (2018)

  10. Eltaher, M., Agwa, M., Mahmoud, F.: Nanobeam sensor for measuring a zeptogram mass. Int. J. Mech. Mater. Des. 12(2), 211–221 (2016)

  11. Eringen, A.C., Edelen, D.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

  12. Fleck, N., Hutchinson, J.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41(12), 1825–1857 (1993)

  13. Fleck, N., Muller, G., Ashby, M., Hutchinson, J.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

  14. Gupta, R.K.: Electrostaticpull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems (MEMS). Ph.D. thesis, Citeseer (1998)

  15. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

  16. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

  17. Hoseinzadeh, M., Khadem, S.: A nonlocal shell theory model for evaluation of thermoelastic damping in the vibration of a double-walled carbon nanotube. Phys. E 57, 6–11 (2014)

  18. Hosseini-Hashemi, S., Nazemnezhad, R.: An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos. Part B Eng. 52, 199–206 (2013)

  19. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, Cambridge (2011)

  20. Kacem, N., Hentz, S., Pinto, D., Reig, B., Nguyen, V.: Nonlinear dynamics of nanomechanical beam resonators: improving the performance of nems-based sensors. Nanotechnology 20(27), 275501 (2009)

  21. Kambali, P.N., Nikhil, V., Pandey, A.K.: Surface and nonlocal effects on response of linear and nonlinear NEMS devices. Appl. Math. Modell. 43, 252–267 (2017)

  22. Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

  23. Lamoreaux, S.K.: The Casimir force: background, experiments, and applications. Rep. Prog. Phys. 68(1), 201 (2004)

  24. Lim, C., Zhang, G., Reddy, J.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

  25. Liu, C.C.: Dynamic behavior analysis of cantilever-type nano-mechanical electrostatic actuator. Int. J. Non-Linear Mech. 82, 124–130 (2016)

  26. Ma, J.B., Jiang, L., Asokanthan, S.F.: Influence of surface effects on the pull-in instability of nems electrostatic switches. Nanotechnology 21(50), 505708 (2010)

  27. Mehrdad Pourkiaee, S., Khadem, S.E., Shahgholi, M.: Nonlinear vibration and stability analysis of an electrically actuated piezoelectric nanobeam considering surface effects and intermolecular interactions. J. Vib. Control 23(12), 1873–1889 (2017)

  28. Miandoab, E.M., Yousefi-Koma, A., Pishkenari, H.N., Fathi, M.: Nano-resonator frequency response based on strain gradient theory. J. Phys. D Appl. Phys. 47(36), 365303 (2014)

  29. Miandoab, E.M., Yousefi-Koma, A., Pishkenari, H.N.: Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams. Microsyst. Technol. 21(2), 457–464 (2015)

  30. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

  31. Moghimi Zand, M., Ahmadian, M.: Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224(9), 2037–2047 (2010)

  32. Mohammadi, M., Eghtesad, M., Mohammadi, H.: Stochastic analysis of dynamic characteristics and pull-in instability of FGM micro-switches with uncertain parameters in thermal environments. Int. J. Mech. Mater. Des. 14(3), 417–442 (2018)

  33. Najar, F., El-Borgi, S., Reddy, J., Mrabet, K.: Nonlinear nonlocal analysis of electrostatic nanoactuators. Compos. Struct. 120, 117–128 (2015)

  34. Nayfeh, A.: Introduction to perturbation techniques. Wiley classics library, Wiley. https://books.google.com/books?id=kzbvAAAAMAAJ (1981). Accessed 10 Sept 2018

  35. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48(1–2), 153–163 (2007)

  36. Nikpourian, A., Ghazavi, M.R., Azizi, S.: On the nonlinear dynamics of a piezoelectrically tuned micro-resonator based on non-classical elasticity theories. Int. J. Mech. Mater. Des. 14, 1–19 (2016)

  37. Ouakad, H.M., El-Borgi, S., Mousavi, S.M., Friswell, M.I.: Static and dynamic response of CNT nanobeam using nonlocal strain and velocity gradient theory. Appl. Math. Modell. 62, 207–222 (2018)

  38. Pradiptya, I., Ouakad, H.M.: Size-dependent behavior of slacked carbon nanotube actuator based on the higher-order strain gradient theory. Int. J. Mech. Mater. Des. 14(3), 393–415 (2018)

  39. Sharabiani, P.A., Yazdi, M.R.H.: Nonlinear free vibrations of functionally graded nanobeams with surface effects. Compos. Part B Eng. 45(1), 581–586 (2013)

  40. Şimşek, M.: Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int. J. Eng. Sci. 105, 12–27 (2016)

  41. Vatankhah, R., Kahrobaiyan, M., Alasty, A., Ahmadian, M.: Nonlinear forced vibration of strain gradient microbeams. Appl. Math. Modell. 37(18–19), 8363–8382 (2013)

  42. Wang, K., Wang, B.: Influence of surface energy on the non-linear pull-in instability of nano-switches. Int. J. Non-Linear Mech. 59, 69–75 (2014)

  43. Wang, X.: Differential Quadrature and Differential Quadrature Based Element Methods: Theory and Applications. Elsevier Science. https://books.google.com/books?id=7SXbBQAAQBAJ (2015). Accessed 10 Sept 2018

  44. Yang, J., Jia, X., Kitipornchai, S.: Pull-in instability of nano-switches using nonlocal elasticity theory. J. Phys. D Appl. Phys. 41(3), 035103 (2008)

  45. Yang, W., Wang, X.: Nonlinear pull-in instability of carbon nanotubes reinforced nano-actuator with thermally corrected Casimir force and surface effect. Int. J. Mech. Sci. 107, 34–42 (2016)

  46. Yang, W., Li, Y., Wang, X.: Scale-dependent dynamic-pull-in of functionally graded carbon nanotubes reinforced nanodevice with piezoelectric layer. J. Aerosp. Eng. 30(3), 04016096 (2016a)

  47. Yang, W., Yang, F., Wang, X.: Coupling influences of nonlocal stress and strain gradients on dynamic pull-in of functionally graded nanotubes reinforced nano-actuator with damping effects. Sensors Actuators A Phys. 248, 10–21 (2016b)

  48. Yang, Y.T., Callegari, C., Feng, X., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nanoletters 6(4), 583–586 (2006)

  49. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, vol. 20. Springer, Berlin (2011)

  50. Younis, M.I., Nayfeh, A.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31(1), 91–117 (2003)

Download references

Author information

Correspondence to Siamak Esmaeilzade Khadem.

Appendix

Appendix

$$\begin{aligned} \begin{aligned}&{\varGamma }_1(f_1(x,t),f_2(x,t))=\zeta _1 \int _0^1 \frac{\partial f_1}{\partial x}\frac{\partial f_2}{\partial x} {\mathrm {d}}x -2 \beta ^2 \zeta _1\int _0^1 \frac{\partial ^2 f_1}{\partial x^2}\frac{\partial ^2 f_2}{\partial x^2} {\mathrm {d}}x \\&{\varGamma }_2(f_1(x,t),f_2(x,t))=-2 \beta ^2 \zeta _1\int _0^1 \frac{\partial f_1}{\partial x}\frac{\partial ^3 f_2}{\partial x^3} {\mathrm {d}}x\\&K_1(w) = \kappa _1 V_{dc}^2 \left( \frac{6\alpha ^2}{(1-w)^4}+\frac{1.3\lambda \alpha ^2}{(1-w)^3} \right) +\kappa _2\left( \frac{12\alpha ^2}{(1-w)^5}\right) +\kappa _3\left( \frac{20\alpha ^2}{(1-w)^6}\right) \\&K_2(w) = \kappa _1 V_{dc}^2 \left( \frac{2\alpha ^2}{(1-w)^3}+\frac{0.65\lambda \alpha ^2}{(1-w)^2}\right) + \kappa _2 \left( \frac{3\alpha ^2}{(1-w)^4}\right) + \kappa _3 \left( \frac{4\alpha ^2}{(1-w)^5}\right) \\&K_3(w) = \kappa _1 V_{dc}^2 \left( -\frac{1}{(1-w)^2}-\frac{0.65 \lambda }{( 1-w)}\right) + \kappa _2 \left( -\frac{1}{(1-w)^3}\right) + \kappa _3 \left( - \frac{1}{(1-w)^4}\right) . \end{aligned} \end{aligned}$$
(A.1)
$$\begin{aligned} \begin{aligned} \gamma (x)=&\left( 3{\varGamma }_1(\phi ,\phi )+3{\varGamma }_2(\phi ,\phi ) + 2{\varGamma }_1(w_s,\psi _1)+4{\varGamma }_1(w_s,\psi _2) +{\varGamma }_2(w_s,\psi _1)+2{\varGamma }_2(w_s,\psi _2)\right. \\ {}&\left. +{\varGamma }_2(\psi _1,w_s)+2{\varGamma }_2(\psi _2,w_s) \right) \left( \phi ^{(2)}-\alpha ^2 \phi ^{(4)}\right) + \left( 2{\varGamma }_1(w_s,\phi )+{\varGamma }_2(w_s,\phi )+{\varGamma }_2(\phi ,w_s) \right) \\ {}&\left( \psi _1^{(2)}+2\psi _2^{(2)} -\alpha ^2 \psi _1^{(4)}-2\alpha ^2\psi _2^{(4)} \right) + \left( 2{\varGamma }_1(\phi ,\psi _1)+4{\varGamma }_1(\phi ,\psi _2) +{\varGamma }_2(\phi ,\psi _1)+2{\varGamma }_2(\phi ,\psi _2) \right. \\&\left. +{\varGamma }_2(\psi _1,\phi )+2{\varGamma }_2(\psi _2,\phi ) \right) \left( w_s^{(2)} - \alpha ^2 w_s^{(4)}\right) -K_1(w_s) \left( 2\phi ^{(1)} \psi _1^{(1)}+4\phi ^{(1)}\psi _2^{(1)}\right) \\&-\left( K_1'(w_s) \left( 2w_s^{(1)}\left( \psi _1^{(1)}+2\psi _2^{(1)}\right) +3\left( \phi ^{(1)}\right) ^2\right) + K_2'(w_s) \left( \psi _1^{(2)}+2\psi _2^{(2)}\right) \right) \phi \\&-\left( K_1'(w_s) \left( 2w_s^{(1)}\phi ^{(1)}\right) + K_2'(w_s) \left( \phi ^{(2)}\right) \right) (\psi _1+2\psi _2) \\&-\left( K_1''(w_s) \left( 2w_s^{(1)}\phi ^{(1)}\right) + K_2''(w_s) \left( \phi ^{(2)}\right) \right) \frac{3\phi ^2}{2} \\&-\left( K_1''(w_s) \left( w_s^{(1)}\right) ^2 + K_2''(w_s) \left( w_s^{(2)}\right) + K_3''(w_s) \right) \left( \phi (\psi _1+2\psi _2)\right) \\&-\left( K_1'''(w_s) \left( w_s^{(1)}\right) ^2 + K_2'''(w_s) \left( w_s^{(2)}\right) + K_3'''(w_s) \right) \frac{\phi ^3}{2} \end{aligned} \end{aligned}$$
(A.2)
$$\begin{aligned} \begin{aligned}&-\beta ^2 \sum _{j=1}^{N}A_{ij}^{(6)} \phi _{j}+\sum _{j=1}^{N}A_{ij}^{(4)} \phi _{j}-\Bigg ( \zeta _1\sum _{i=1}^{N}C_i\bigg (\sum _{j=1}^{N}A_{ij}^{(1)} w_{s_j}\bigg )^{2} -2\beta ^2 \zeta _1\sum _{i=1}^{N}C_i\bigg (\bigg (\sum _{j=1}^{N}A_{ij}^{(2)} w_{s_j}\bigg )^{2}+\sum _{j=1}^{N}A_{ij}^{(1)} w_{s_j}\cdot A_{ij}^{(3)} w_{s_j}\bigg ) \\&+\zeta _2 \Bigg ) \Bigg ( \sum _{j=1}^{N}A_{ij}^{(2)} \phi _j-\alpha ^2\sum _{j=1}^{N}A_{ij}^{(4)}\phi _j\Bigg ) \\&-\Bigg ( 2\zeta _1\sum _{i=1}^{N}C_i \sum _{j=1}^{N}\bigg (A_{ij}^{(1)} w_{s_j}\bigg )\bigg (A_{ij}^{(1)} \phi _j\bigg )- 4\zeta _1\beta ^2\sum _{i=1}^{N}C_i \sum _{j=1}^{N}\bigg (A_{ij}^{(2)} w_{s_j}\bigg )\bigg (A_{ij}^{(2)} \phi _j\bigg )-2\zeta _1\beta ^2\sum _{i=1}^{N}C_i \sum _{j=1}^{N}\bigg (A_{ij}^{(1)} w_{s_j}\bigg )\bigg (A_{ij}^{(3)} \phi _j\bigg ) \\&-2\zeta _1\beta ^2\sum _{i=1}^{N}C_i \sum _{j=1}^{N}\bigg (A_{ij}^{(3)} w_{s_j}\bigg )\bigg (A_{ij}^{(1)} \phi _j\bigg ) \Bigg ) \Bigg ( \sum _{j=1}^{N}A_{ij}^{(2)} w_{s_j} -\alpha ^2\sum _{j=1}^{N}A_{ij}^{(4)}w_{s_j}\Bigg ) \\&+K_1(w_{s_i})\Bigg (2\sum _{j=1}^{N}\bigg (A_{ij}^{(1)} w_{s_j}\bigg )\bigg (A_{ij}^{(1)} \phi _j\bigg )\Bigg ) + K_2(w_{s_i})\Bigg (\sum _{j=1}^{N}A_{ij}^{(2)} \phi \Bigg ) \\&+\Bigg ( K_1'(w_{s_i})\bigg (\sum _{j=1}^{N}A_{ij}^{(1)} w_{s_j}\bigg )^2 + K_2'(w_{s_i})\bigg (\sum _{j=1}^{N}A_{ij}^{(2)} w_{s_j}\bigg )+ K_3'(w_{s_i}) \Bigg )\phi _i=\omega ^2 \Bigg ( \phi _i-\alpha ^2\sum _{j=1}^{N}A_{ij}^{(2)} \phi _j \Bigg ). \end{aligned} \end{aligned}$$
(A.3)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Esfahani, S., Esmaeilzade Khadem, S. & Ebrahimi Mamaghani, A. Size-dependent nonlinear vibration of an electrostatic nanobeam actuator considering surface effects and inter-molecular interactions. Int J Mech Mater Des 15, 489–505 (2019) doi:10.1007/s10999-018-9424-7

Download citation

Keywords

  • Nanobeam actuator
  • Nonlocal strain gradient theory
  • Surface effects
  • Inter-molecular forces
  • Nonlinear vibration
  • Differential quadrature method (DQM)