Three-dimensional elastoplastic solids simulation by an effective IGA based on Bézier extraction of NURBS

  • Tiantang YuEmail author
  • Wenjiang Lai
  • Tinh Quoc BuiEmail author


The isogeometric analysis (IGA), which employs non-uniform rational B-splines (NURBS) basis as shape functions for both representation of geometry and approximation of the field variables, owns several inherent advantages to become an effective numerical method such as an exact geometry description with fewer control points, high-order continuity, and high accuracy. Unlike the C0-continuity shape functions in the conventional finite element method (FEM), the high-order basis functions in IGA are not confined to one element, but span on several elements instead. This property makes the programming task difficult, and more importantly they cannot be straightforwardly embedded into the existing FEM framework. In this paper, we provide an effective numerical scheme by further extending the IGA based on the Bézier extraction of NURBS to study mechanical behavior of elasto-plastic problems in three-dimension (3D). The Bézier extraction operator decomposes NURBS functions into a set of Bernstein polynomials and provides C0-continuity Bézier elements for the IGA, which are similar to Lagrange elements structure. Consequently, the implementation of IGA is now similar to that of conventional FEM, and can easily be embedded in most existing FEM codes. The merits of the proposed formulation are also demonstrated by its convergence and validation studies against reference solutions considering both simple and complicated configurations.


3D elasto-plastic problems Isogeometric analysis NURBS Bézier extraction FEM Numerical methods 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Hughes, T.J.R., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197(1–4), 173–201 (2007)MathSciNetzbMATHGoogle Scholar
  2. Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Zhang, Y.: Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput. Mech. 43(1), 3–37 (2008)MathSciNetzbMATHGoogle Scholar
  3. Bhardwaj, G., Singh, I.V., Mishra, B.K., Bui, Q.T.: Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions. Compos. Struct. 126, 347–359 (2015)Google Scholar
  4. Borden, M.J., Scott, M.A., Evans, J.A., Hughes, T.J.R.: Isogeometric finite element data structures based on Bézier extraction of NURBS. Int. J. Numer. Meth. Eng. 87, 15–47 (2011)zbMATHGoogle Scholar
  5. Buczkowski, B., Kleiber, M.: Elasto-plastic interface model for 3D-frictional orthotropic contact problems. Int. J. Numer. Meth. Eng. 40(4), 599–619 (1997)zbMATHGoogle Scholar
  6. Bui, T.Q.: Extended isogeometric dynamic and static fracture analysis for cracks in piezoelectric materials using NURBS. Comput. Methods Appl. Mech. Eng. 295, 470–509 (2015)MathSciNetGoogle Scholar
  7. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis. John Wiley & Sons, Hoboken (2009)zbMATHGoogle Scholar
  8. De Luycker, E., Benson, D.J., Belytschko, T., Bazilevs, Y., Hsu, M.C.: X-FEM in isogeometric analysis for linear fracture mechanics. Int. J. Numer. Meth. Eng. 87(6), 541–565 (2011)MathSciNetzbMATHGoogle Scholar
  9. Elguedj, T., Hughes, T.J.R.: Isogeometric analysis of nearly incompressible large strain plasticity. Comput. Methods Appl. Mech. Eng. 268, 388–416 (2014)MathSciNetzbMATHGoogle Scholar
  10. Elguedj, T., Bazilevs, Y., Calo, V.M., Hughes, T.J.R.: B and F projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Comput. Methods Appl. Mech. Engrg. 197, 2732–2762 (2008a)zbMATHGoogle Scholar
  11. Elguedj, T., Bazilevs, Y., Calo, V.M., Hughes, T.J.R.: F-bar projection method for finite deformation elasticity and plasticity using NURBS based isogeometric analysis. Int. J. Mater. Form. 1, 1091–1094 (2008b)Google Scholar
  12. Evans, E.J., Scott, M.A., Li, X., Thomas, D.C.: Hierarchical T-splines: analysis-suitability, Bezier extraction, and application as an adaptive basis for isogeometric analysis. Comput. Methods Appl. Mech. Engrg. 284, 1–20 (2015)MathSciNetzbMATHGoogle Scholar
  13. Ghorashi, S.S., Valizadeh, N., Mohammadi, S.: Extended isogeometric analysis for simulation of stationary and propagating cracks. Int. J. Numer. Methods Eng. 89(9), 1069–1101 (2012)MathSciNetzbMATHGoogle Scholar
  14. Gun, H.: Elasto-plastic static stress analysis of 3D contact problems with friction by using the boundary element method. Eng. Anal. Bound. Elem. 28(7), 779–790 (2004a)zbMATHGoogle Scholar
  15. Gun, H.: Boundary element analysis of 3-D elasto-plastic contact problems with friction. Comput. Struct. 82(7–8), 555–566 (2004b)Google Scholar
  16. Hodge, P.G., White, G.N.: A quantitative comparison of flow and deformation theories of plasticity. J. Appl. Mech. 17(2), 180–184 (1950)MathSciNetzbMATHGoogle Scholar
  17. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)MathSciNetzbMATHGoogle Scholar
  18. Irzal, F., Remmers, J.J.C., Verhoosel, C.V., de Borst, R.: An isogeometric analysis Bézier interface element for mechanical and poromechanical fracture problems. Int. J. Numer. Meth. Eng. 97, 608–628 (2014)zbMATHGoogle Scholar
  19. Kang, P., Youn, S.K.: Isogeometric analysis of topologically complex shell structures. Finite Elem. Anal. Des. 99, 68–81 (2015)MathSciNetGoogle Scholar
  20. Khoei, A.R., Biabanaki, S.O.R., Anahid, M.: Extended finite element method for three-dimensional large plasticity deformations on arbitrary interfaces. Comput. Methods Appl. Mech. Eng. 197(9–12), 1100–1114 (2008)MathSciNetzbMATHGoogle Scholar
  21. Lu, J.: Isogeometric contact analysis: geometric basis and formulation of frictionless contact. Comput. Methods Appl. Mech. Eng. 200(5–8), 726–741 (2011)MathSciNetzbMATHGoogle Scholar
  22. Nguyen, T.N.: Isogeometric finite element analysis based on Bézier extraction of NURBS and T-splines, Norwegian University of Science and Technology (2011)Google Scholar
  23. Nguyen, M.N., Bui, T.Q., Yu, T.T., Hirose, S.: Isogeometric analysis for unsaturated flow problems. Comput. Geotech. 62, 257–267 (2014)Google Scholar
  24. Nowzartash, F., Mohareb, M.: An elasto-plastic finite element for steel pipelines. Int. J. Press. Vessels Pip. 81(12), 919–930 (2004)Google Scholar
  25. Owen, D.R.J., Hinton, E.: Finite Elements in Plasticity: Theory and Practice. Pineridge Press, Whiting (1980)zbMATHGoogle Scholar
  26. Rezaei Mojdehi, A., Darvizeh, A., Basti, A.: Application of meshless local Petrov–Galerkin (MLPG) method to three dimensional elasto-plastic problems based on deformation theory of plasticity. Comput. Model. Eng. Sci. 77(1), 1–31 (2011)MathSciNetzbMATHGoogle Scholar
  27. Rezaei Mojdehi, A., Darvizeh, A., Basti, A.: Nonlinear dynamic analysis of three-dimensional elasto-plastic solids by the meshless local Petrov–Galerkin (MLPG) method. Comput. Mater. Contin. 29(1), 15–39 (2012)zbMATHGoogle Scholar
  28. Ribeiro, T.S.A., Beer, G., Duenser, C.: Efficient elastoplastic analysis with the boundary element method. Comput. Mech. 41(5), 715–732 (2008)zbMATHGoogle Scholar
  29. Romanova, V., Balokhonov, R., Makarov, P., Schmauder, S., Soppa, E.: Simulation of elasto-plastic behaviour of an artificial 3D-structure under dynamic loading. Comput. Mater. Sci. 28(3–4), 518–528 (2003)Google Scholar
  30. Romanova, V.A., Soppa, E., Schmauder, S., Balokhonov, R.R.: Mesomechanical analysis of the elasto-plastic behavior of a 3D composite-structure under tension. Comput. Mech. 36(6), 475–483 (2005)zbMATHGoogle Scholar
  31. Rypl, D., Patzák, B.: Assessment of computation efficiency of numerical quadrature schemes in the isogeometric analysis. Eng. Mech. 19(4), 249–260 (2012)Google Scholar
  32. Schillinger, D., Hossain, S.J., Hughes, T.J.R.: Reduced Bezier element quadrature rules for quadratic and cubic splines in isogeometric analysis. Comput. Methods Appl. Mech. Engrg. 277, 1–45 (2014)MathSciNetzbMATHGoogle Scholar
  33. Scott, M.A., Borden, M.J., Verhoosel, C.V., Sederberg, T.W., Hughes, T.J.R.: Isogeometric finite element data structures based on Bézier extraction of T-splines. Int. J. Numer. Meth. Eng. 88, 126–156 (2011)zbMATHGoogle Scholar
  34. Shojaee, S., Izadpanah, E., Valizadeh, N., et al.: Free vibration analysis of thin plates by using a NURBS-based isogeometric approach. Finite Elem. Anal. Des. 61, 23–34 (2012)MathSciNetGoogle Scholar
  35. Taylor, R.L.: Isogeometric analysis of nearly incompressible solids. Int. J. Numer. Meth. Eng. 87, 273–288 (2011)MathSciNetzbMATHGoogle Scholar
  36. Thomas, D.C., Scott, M.A., Evans, J.A., Tew, K., Evans, E.J.: Bezier projection: a unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis. Comput. Methods Appl. Mech. Engrg. 284, 55–105 (2015)MathSciNetzbMATHGoogle Scholar
  37. Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q., Bordas, S.P.A.: NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Compos. Struct. 99, 309–326 (2013)Google Scholar
  38. Verhoosel, C.V., Scott, M.A., Hughes, T.J.R., de Borst, R.: An isogeometric analysis approach to gradient damage models. Int. J. Numer. Methods Eng. 86(1), 115–134 (2011)MathSciNetzbMATHGoogle Scholar
  39. Wall, W.A., Frenzel, M.A., Cyron, C.: Isogeometric structural shape optimization. Comput. Methods Appl. Mech. Eng. 197(33–40), 2976–2988 (2008)MathSciNetzbMATHGoogle Scholar
  40. Xu, B.Y.: Plastic Mechanics. China Higher Education Press, Beijing (1988)Google Scholar
  41. Yin, S.H., Hale, J.S., Yu, T.T., Bui, T.Q., Bordas, S.P.A.: Isogeometric locking-free plate element: a simple first order shear deformation theory for functionally graded plates. Compos. Struct. 118, 121–138 (2014)Google Scholar
  42. Yin, S.H., Yu, T.T., Bui, T.Q., Nguyen, M.N.: Geometrically nonlinear analysis of functionally graded plates using isogeometric analysis. Eng. Comput. 32, 519–558 (2015a)Google Scholar
  43. Yin, S.H., Yu, T.T., Bui, T.Q., Xia, S.F., Hirose, S.: A cutout isogeometric analysis for thin laminated composite plates using level sets. Compos. Struct. 127, 152–164 (2015b)Google Scholar
  44. Yu, T.T., Lai, Y.L., Yin, S.H.: Dynamic crack analysis in isotropic/orthotropic media via extended isogeometric analysis, Mathematical Problems in Engineering, Article ID 725795, 11p (2014)Google Scholar
  45. Yu, T.T., Yin, S.H., Bui, T.Q., Hirose, S.: A simple FSDT-based isogeometric analysis for geometrically nonlinear analysis of functionally graded plates. Finite Elem. Anal. Des. 96, 1–10 (2015)Google Scholar
  46. Yu, T.T., Yin, S.H., Bui, T.Q., Xia, S.F., Tanaka, S., Hirose, S.: NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method. Thin-Walled Struct. 101, 141–156 (2016)Google Scholar
  47. Zhang, H.W., Wu, J.K., Lv, J.: A new multiscale computational method for elasto-plastic analysis of hetergeneous materials. Comput. Mech. 49, 149–169 (2012)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Engineering MechanicsHohai UniversityNanjingPeople’s Republic of China
  2. 2.Institute for Research and DevelopmentDuy Tan UniversityDa Nang CityVietnam
  3. 3.Department of Civil and Environmental EngineeringTokyo Institute of TechnologyMeguro-ku, TokyoJapan

Personalised recommendations