Nonlinear reduced-order modeling and effectiveness of electrically-actuated microbeams for bio-mass sensing applications

  • M. GhommemEmail author
  • A. Abdelkefi


We apply perturbation techniques to develop a reduced-order model of an electrically-actuated microcantilever beam with a tip mass deployed as resonant sensor for bio-mass detection and sensing. This analytical model is validated against numerical model obtained by combining the differential quadrature method for space discretization and Runge–Kutta for time marching. The model is then employed to analyze the nonlinear dynamics and effectiveness of the bio-mass sensor under varying electric loading and explore novel concepts to quantify the mass of biological entities. The working principle of the present bio-mass sensor is based on inspecting the attenuation in the microbeam vibrations resulting from the biological element being deposited on its tip and then extracting the corresponding mass. The output parameter of the present bio-mass sensor is considered as the change in the maximum beam deflections at the tip with and without added mass. Calibration curves, showing the variations of the output parameter with the added mass, are generated to demonstrate the feasibility of the proposed sensing approach for mass detection of biological elements, particularly the Escherichia coli. Reducing the AC voltage when exciting the microbeam is observed to enhance the sensitivity of the output parameter for specific mass threshold. However, the operational range of the bio-mass sensor can be extended when applying higher DC and AC voltages.


Bio-mass sensor Reduced-order model Nonlinear dynamics Electric actuation Perturbation techniques 


  1. Abbasnejad, B., Rezazadeh, G.: Mechanical behavior of a FGM micro-beam subjected to a nonlinear electrostatic pressure. Int. J. Mech. Mater. Des. 8, 381–392 (2012)CrossRefGoogle Scholar
  2. Aboelkassem, Y., Nayfeh, A., Ghommem, M.: Bio-mass sensor using an electrostatically-actuated microcantilever in a vacuum microchannel. Microsyst. Technol. 16, 1749–1755 (2010)CrossRefGoogle Scholar
  3. Bouchaala, A., Jaber, N., Yassine, O., Shekhah, O., Chernikova, V., Eddaoudi, M., Younis, M.I.: Nonlinear-based MEMS sensors and active switches for gas detection. Sensors 16, 758 (2016a)CrossRefGoogle Scholar
  4. Bouchaala, A., Nayfeh, A.H., Younis, M.: Frequency shifts of micro and nano cantilever beam resonators due to added masses. J. Dyn. Syst. Meas. Control 138, 1–9 (2016b)CrossRefGoogle Scholar
  5. Bouchaala, A., Nayfeh, A.H., Jaber, N., Younis, M.: Mass and position determination in MEMS mass sensors: a theoretical and an experimental investigation. J. Micromech. Microeng. 26, 1–10 (2016c)CrossRefGoogle Scholar
  6. Bouchaala, A., Nayfeh, A.H., Younis, M.: Analytical study of the frequency shifts of micro and nano clamped–clamped beam resonators due to an added mass. Meccanica 52, 333–348 (2017)CrossRefzbMATHGoogle Scholar
  7. Chen, X., Meguid, S.A.: Asymmetric bifurcation of initially curved nanobeam. J. Appl. Mech. 82, 091003 (2015a)CrossRefGoogle Scholar
  8. Chen, X., Meguid, S.A.: Snap-through buckling of initially curved microbeam subject to an electrostatic force. Proc. R. Soc. A 471, 20150072 (2015b)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Chen, X., Meguid, S.A.: Dynamic behavior of micro-resonator under alternating current voltage. Int. J. Mech. Mater. Des. 13(4), 1–17 (2016).
  10. Chen, X., Meguid, S.A.: Asymmetric bifurcation of thermally and electrically actuated functionally graded material microbeam. Proc. R. Soc. A 472, 20150597 (2017)CrossRefGoogle Scholar
  11. Chen, X., Meguid, S.A.: Nonlinear vibration analysis of a microbeam subject to electrostatic force. Acta Mech. 228, 1343–1361 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Cooper, M.A.: Label-Free Biosensors: Techniques and Applications. Cambridge University Press, New York (2009)CrossRefGoogle Scholar
  13. Elishakoff, I., Versaci, C., Maugeri, N., Muscolino, G.: Clamped-free single-walled carbon nanotube-based mass sensor treated as Bernoulli–Euler beam. J. Nanotechnol. Eng. Med. 2, 1–8 (2011)zbMATHGoogle Scholar
  14. Eltaher, M.A., Agwa, M.A., Mahmoud, F.F.: Nanobeam sensor for measuring a zeptogram mass. Int. J. Mech. Mater. Des. 12, 211–221 (2016)CrossRefGoogle Scholar
  15. Farokhi, H., Ghayesh, M.H.: Size-dependent behaviour of electrically actuated microcantilever-based MEMS. Int. J. Mech. Mater. Des. 12, 301–315 (2016)CrossRefGoogle Scholar
  16. Ghaderi, R.: Dynamic modeling and vibration analysis of piezoelectric microcantilever in AFM application. Int. J. Mech. Mater. Des. 12, 413–425 (2016)CrossRefGoogle Scholar
  17. Ghayesh, M.H., Farokhi, H.: Size-dependent internal resonances and modal interactions in nonlinear dynamics of microcantilevers. Int. J. Mech. Mater. Des. 1–14 (2017).
  18. Ghommem, M., Abdelkefi, A.: Novel design of microgyroscopes employing electrostatic actuation and resistance-change based sensing. J. Sound Vib. 411, 278–288 (2017a)CrossRefGoogle Scholar
  19. Ghommem, M., Abdelkefi, A.: Nonlinear analysis of rotating nanocrystalline silicon microbeams for microgyroscope applications. Microsyst. Technol. 23, 5931–5946 (2017b)CrossRefGoogle Scholar
  20. Ghommem, M., Nayfeh, A., Choura, S.: Model reduction and analysis of a vibrating beam microgyroscope. J. Vib. Control 19, 1240–1249 (2013)MathSciNetCrossRefGoogle Scholar
  21. Ibrahim, M., Younis, M.I.: The dynamic response of electrostatically driven resonators under mechanical shock. J. Micromech. Microeng. 20, 025006 (2009)CrossRefGoogle Scholar
  22. Johnson, B.N., Mutharasan, R.: Biosensing using dynamic-mode cantilever sensors: a review. Biosens. Bioelectron. 32, 118 (2012)CrossRefGoogle Scholar
  23. Jrad, M., Younis, M.I., Najar, F.: Modeling and design of an electrically actuated resonant microswitch. J. Vib. Control 22, 559–569 (2016)MathSciNetCrossRefGoogle Scholar
  24. Kacem, N., Arcamone, J., Perez-Murano, F., Hentz, S.: Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications. J. Micromech. Microeng. 20, 1–9 (2010)CrossRefGoogle Scholar
  25. Kim, D., Hong, S., Jang, J., Park, J.: Simultaneous determination of position and mass in the cantilever sensor using transfer function method. Appl. Phys. Lett. 103, 033108 (2013)CrossRefGoogle Scholar
  26. Kivi, A.R., Azizi, S., Khalkhali, A.: Sensitivity enhancement of a MEMS sensor in nonlinear regime. Int. J. Mech. Mater. Des. 12, 337–351 (2016)CrossRefGoogle Scholar
  27. Li, X., Yu, H., Gan, X., Xia, X., Xu, P., Li, J., Liu, M., Li, Y.: Integrated MEMS/NEMS resonant cantilevers for ultrasensitive biological detection. J. Sens. 1–10 (2009).
  28. Maraldo, D., Mutharasan, R.: Mass-change sensitivity of high-order mode of piezoelectric-excited millimeter-sized cantilever (PEMC) sensors: theory and experiments. Sens. Actuators B Chem. 143, 731–739 (2010)CrossRefGoogle Scholar
  29. Michael, A., Kwok, C.Y.: Design criteria for bi-stable behavior in a buckled multi-layered MEMS bridge. J. Micromech. Microeng. 16, 2034 (2006)CrossRefGoogle Scholar
  30. Najar, F., Choura, S., El-Borgi, S., Abdel-Rahman, E.M., Nayfeh, A.H.: Modeling and design of variable-geometry electrostatic microactuators. J. Micromech. Microeng. 15, 419–429 (2005)CrossRefzbMATHGoogle Scholar
  31. Najar, F., Choura, S., Abdel-Rahman, E.M., El-Borgi, S., Nayfeh, A.H.: Dynamic analysis of variable-geometry electrostatic microactuators. J. Micromech. Microeng. 16, 2449–2457 (2006)CrossRefzbMATHGoogle Scholar
  32. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (2011)zbMATHGoogle Scholar
  33. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley, New York (1995)CrossRefzbMATHGoogle Scholar
  34. Shaat, M., Abdelkefi, A.: Modeling the material structure and couple stress effects of nanocrystalline silicon beams for pull-in and bio-mass sensing applications. Int. J. Mech. Sci. 101–102, 280–291 (2015)CrossRefGoogle Scholar
  35. Shaat, M., Abdelkefi, A.: Buckling characteristics of nanocrystalline nano-beams. Int. J. Mech. Mater. Des. 1–19 (2016).
  36. Singh, S.S., Pal, P., Pandey, A.K.: Mass sensitivity of nonuniform microcantilever beams. J. Vib. Acoust. 138, 1–7 (2016)Google Scholar
  37. Wu, G., Datar, R.H., Hansen, K.M., Thundat, T., Cote, R.J., Majumdar, A.: Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 19, 856–860 (2001)CrossRefGoogle Scholar
  38. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, Berlin (2011)CrossRefGoogle Scholar
  39. Younis, M., Alsaleem, F.: Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. J. Comput. Nonlinear Dyn. 4, 033108 (2009)CrossRefGoogle Scholar
  40. Younis, M., Alsaleem, F., Jordy, D.: The response of clamped–clamped microbeams under mechanical shock. Int. J. Nonlinear Mech. 42, 643–657 (2007)CrossRefGoogle Scholar
  41. Yu, Y., Wu, B., Lim, C.W.: Numerical and analytical approximations to large post-buckling deformation of MEMS. Int. J. Mech. Sci. 55, 95–103 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringAmerican University of SharjahSharjahUAE
  2. 2.Department of Mechanical and Aerospace EngineeringNew Mexico State UniversityLas CrucesUSA

Personalised recommendations