Advertisement

Investigation of interfacial thermal resistance of hybrid graphene/hexagonal boron nitride

  • Ahmet Emin Senturk
  • Ahmet Sinan Oktem
  • Alp Er S. KonukmanEmail author
Article
  • 27 Downloads

Abstract

Hybrid graphene/hexagonal boron-nitride (G/h-BN) has shown significant physical properties and has been fabricated recently. Structural defects, such as Stone–Wales (SW) and vacancy, unavoidably exist in the interface of hybrid G/h-BN during the growth process. In this study, the interfacial thermal resistance (ITR) of armchair and zigzag hybrid G/h-BN with vacancy and SW defects is systematically investigated, using molecular dynamics (MD) simulations. Our results indicate that armchair edge hybrid G/h-BN possesses higher normalized ITR than the zigzag one. In addition, vacancy and SW defects introduced important influences on the ITR of hybrid G/h-BN. The ITR of hybrid G/h-BN is studied with two distinct sections. In the first section, various types of atoms, such as C, N and B, vacancy defects located throughout the interface of armchair and zigzag hybrid G/h-BN are studied. Our MD simulations results show that when the number of vacancy defect is increased, the effect of C atom vacancy defect on the normalized ITR of hybrid G/h-BN is higher than other atoms. On the other hand, the influence of B atom vacancy defect on the normalized ITR is lowest. In the second section, CC and BN types of SW defects positioned along the interface of armchair and zigzag hybrid G/h-BN are investigated. The results of this study demonstrate that CC type of SW defect shows higher normalized ITR than BN type one by increasing the SW number of defects. The obtained results in this study may open new insights for potential applications of thermal transport and control for the hybrid G/h-BN type structures.

Keywords

Hybrid graphene/hexagonal boron-nitride Molecular dynamics Interfacial thermal resistance Vacancy defect Stone–Wales defect 

Notes

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK), Grant Number: 118M726.

References

  1. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).  https://doi.org/10.1021/nl0731872 CrossRefGoogle Scholar
  2. Bhowmick, S., Singh, A.K., Yakobson, B.I.: Quantum dots and nanoroads of graphene embedded in hexagonal boron nitride. J. Phys. Chem. C 115, 9889–9893 (2011).  https://doi.org/10.1021/jp200671p CrossRefGoogle Scholar
  3. Boldrin, L., Scarpa, F., Chowdhury, R., Adhikari, S.: Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology. (2011).  https://doi.org/10.1088/0957-4484/22/50/505702 Google Scholar
  4. Chen, Y., Zou, J., Campbell, S.J., Caer, G.L.: Boron nitride nanotubes: pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430–2432 (2004).  https://doi.org/10.1063/1.1667278 CrossRefGoogle Scholar
  5. Chien, S.K., Yang, Y.T., Chen, C.K.: Influence of chemisorption on the thermal conductivity of graphene nanoribbons. Carbon 50, 421–428 (2012).  https://doi.org/10.1016/j.carbon.2011.08.056 CrossRefGoogle Scholar
  6. Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., Srivastava, A., Wang, Z.F., Storr, K., Balicas, L., Liu, F., Ajayan, P.M.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010).  https://doi.org/10.1038/nmat2711 CrossRefGoogle Scholar
  7. Ding, N., Chen, X., Wu, C.M.L.: Mechanical properties and failure behaviors of the interface of hybrid graphene/hexagonal boron nitride sheets. Sci. Rep. 6, 31499 (2016a).  https://doi.org/10.1038/srep31499 CrossRefGoogle Scholar
  8. Ding, N., Lei, Y., Chen, X., Deng, Z., Ng, S.P., Wu, C.M.L.: Structures and electronic properties of vacancies at the interface of hybrid graphene/hexagonal boron nitride sheet. Comput. Mater. Sci. 117, 172–179 (2016b).  https://doi.org/10.1016/j.commatsci.2015.12.052 CrossRefGoogle Scholar
  9. Eshkalak, K.E., Sadeghzadeh, S., Jalaly, M.: The mechanical design of hybrid graphene/boron nitride nanotransistors: geometry and interface effects. Solid State Commun. 270, 82–86 (2018a).  https://doi.org/10.1016/j.ssc.2017.12.001 CrossRefGoogle Scholar
  10. Eshkalak, K.E., Sadeghzadeh, S., Jalaly, M.: Mechanical properties of defective hybrid graphene-boron nitride nanosheets: a molecular dynamics study. Comput. Mater. Sci. 149, 170–181 (2018b).  https://doi.org/10.1016/j.commatsci.2018.03.023 CrossRefGoogle Scholar
  11. Fan, Y., Hou, K., Wang, Z., He, T., Zhang, X., Zhang, H., Dong, J., Liu, X., Zhao, M.: Theoretical insights into the built-in electric field and band offsets of BN/C heterostructured zigzag nanotubes. J. Phys. D Appl. Phys. (2011a).  https://doi.org/10.1088/0022-3727/44/9/095405 Google Scholar
  12. Fan, Y., Zhao, M., Zhang, X., Wang, Z., He, T., Xia, H., Liu, X.: Manifold electronic structure transition of BNC biribbons. J. Appl. Phys. 110, 1–7 (2011b).  https://doi.org/10.1063/1.3619800 Google Scholar
  13. Gao, Y., Zhang, Y., Chen, P., Li, Y., Liu, M., Gao, T., Ma, D., Chen, Y., Cheng, Z., Qiu, X., Duan, W., Liu, Z.: Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges. Nano Lett. 13, 3439–3443 (2013).  https://doi.org/10.1021/nl4021123 CrossRefGoogle Scholar
  14. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., Iijima, S.: Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).  https://doi.org/10.1038/nature02817 CrossRefGoogle Scholar
  15. Hong, Y., Zhang, J., Zeng, X.C.: Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet. Phys. Chem. Chem. Phys. 18, 24164–24170 (2016).  https://doi.org/10.1039/c6cp03933b CrossRefGoogle Scholar
  16. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).  https://doi.org/10.1103/PhysRevA.31.1695 CrossRefGoogle Scholar
  17. Hu, M., Shenogin, S., Keblinski, P.: Molecular dynamics simulation of interfacial thermal conductance between silicon and amorphous polyethylene. Appl. Phys. Lett. 91, 241910 (2007).  https://doi.org/10.1063/1.2824864 CrossRefGoogle Scholar
  18. Huang, Y., Wu, J., Hwang, K.C.: Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B. 74, 1–9 (2006).  https://doi.org/10.1103/PhysRevB.74.245413 Google Scholar
  19. Jiang, J.W., Wang, J.S., Wang, B.S.: Minimum thermal conductance in graphene and boron nitride superlattice. Appl. Phys. Lett. 99, 97–100 (2011).  https://doi.org/10.1063/1.3619832 Google Scholar
  20. Kınacı, A., Haskins, J.B., Sevik, C., Çaǧın, T.: Thermal conductivity of BN-C nanostructures. Phys. Rev. B. 86, 1–8 (2012).  https://doi.org/10.1103/PhysRevB.86.115410 Google Scholar
  21. Kurdyumov, A.V., Solozhenko, V.L., Zelyavski, W.B.: Lattice parameters of boron nitride polymorphous modifications as a function of their crystal-structure perfection. J. Appl. Crystallogr. 28, 540–545 (2018).  https://doi.org/10.1107/S002188989500197X CrossRefGoogle Scholar
  22. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).  https://doi.org/10.1126/science.1157996 CrossRefGoogle Scholar
  23. Levendorf, M.P., Kim, C.-J., Brown, L., Huang, P.Y., Havener, R.W., Muller, D.A., Park, J.: Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012).  https://doi.org/10.1038/nature11408 CrossRefGoogle Scholar
  24. Lin, W., Moon, K.S., Wong, C.P.: A combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube-polymer nanocomposites: toward applications as thermal interface materials. Adv. Mater. 21, 2421–2424 (2009).  https://doi.org/10.1002/adma.200803548 CrossRefGoogle Scholar
  25. Lindsay, L., Broido, D.A.: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B. 81, 205441 (2010).  https://doi.org/10.1103/PhysRevB.81.205441 CrossRefGoogle Scholar
  26. Liu, Y., Wu, X., Zhao, Y., Zeng, X.C., Yang, J.: Half-metallicity in hybrid graphene/boron nitride nanoribbons with dihydrogenated edges. J. Phys. Chem. C 115, 9442–9450 (2011).  https://doi.org/10.1021/jp201350e CrossRefGoogle Scholar
  27. Liu, X., Zhang, G., Zhang, Y.W.: Graphene-based thermal modulators. Nano Res. 8, 2755–2762 (2015a).  https://doi.org/10.1007/s12274-015-0782-2 CrossRefGoogle Scholar
  28. Liu, Y.S., Zhou, W.Q., Feng, J.F., Wang, X.F.: Enhanced spin thermoelectric effects in BN-embedded zigzag graphene nanoribbons. Chem. Phys. Lett. 625, 14–19 (2015b).  https://doi.org/10.1016/j.cplett.2015.01.014 CrossRefGoogle Scholar
  29. Lu, J., Gomes, L.C., Nunes, R.W., Castro Neto, A.H., Loh, K.P.: Lattice relaxation at the interface of two-dimensional crystals: graphene and hexagonal boron-nitride. Nano Lett. 14, 5133–5139 (2014).  https://doi.org/10.1021/nl501900x CrossRefGoogle Scholar
  30. Materials studio. https://accelrys.com (2018)
  31. Mortazavi, B., Ahzi, S.: Thermal conductivity and tensile response of defective graphene: a molecular dynamics study. Carbon 63, 460–470 (2013).  https://doi.org/10.1016/j.carbon.2013.07.017 CrossRefGoogle Scholar
  32. Mortazavi, B., Rémond, Y.: Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations. Phys. E. 44, 1846–1852 (2012).  https://doi.org/10.1016/j.physe.2012.05.007 CrossRefGoogle Scholar
  33. Nakamura, J., Nitta, T., Natori, A.: Electronic and magnetic properties of BNC ribbons. Phys. Rev. B. 72, 1–5 (2005).  https://doi.org/10.1103/PhysRevB.72.205429 Google Scholar
  34. Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).  https://doi.org/10.1103/RevModPhys.81.109 CrossRefGoogle Scholar
  35. Ng, T.Y., Yeo, J., Liu, Z.: Molecular dynamics simulation of the thermal conductivity of short strips of graphene and silicene: a comparative study. Int. J. Mech. Mater. Des. 9, 105–114 (2013).  https://doi.org/10.1007/s10999-013-9215-0 CrossRefGoogle Scholar
  36. Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).  https://doi.org/10.1080/00268978400101201 CrossRefGoogle Scholar
  37. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. (1995).  https://doi.org/10.1006/jcph.1995.1039 zbMATHGoogle Scholar
  38. Ramasubramaniam, A., Naveh, D.: Carrier-induced antiferromagnet of graphene islands embedded in hexagonal boron nitride. Phys. Rev. B. 84, 1–7 (2011).  https://doi.org/10.1103/PhysRevB.84.075405 Google Scholar
  39. Senturk, A.E., Oktem, A.S., Konukman, A.E.S.: Effects of the nitrogen doping configuration and site on the thermal conductivity of defective armchair graphene nanoribbons. J. Mol. Model. (2017).  https://doi.org/10.1007/s00894-017-3415-8 Google Scholar
  40. Senturk, A.E., Oktem, A.S., Konukman, A.E.S.: Influence of defect locations and nitrogen doping configurations on the mechanical properties of armchair graphene nanoribbons. J. Mol. Model. 24, 0–9 (2018a).  https://doi.org/10.1007/s00894-018-3581-3 CrossRefGoogle Scholar
  41. Senturk, A.E., Oktem, A.S., Konukman, A.E.S.: Investigation of the effects of nitrogen doping within different sites of Stone–Wales defects on the mechanical properties of graphene by using a molecular dynamics simulation method. J. Fac. Eng. Archit. Gazi Univ. (2018b).  https://doi.org/10.17341/gazimmfd.416462 Google Scholar
  42. Seol, G., Guo, J.: Bandgap opening in boron nitride confined armchair graphene nanoribbon. Appl. Phys. Lett. 98, 2009–2012 (2011).  https://doi.org/10.1063/1.3571282 CrossRefGoogle Scholar
  43. Shi, L.: Thermal and thermoelectric transport in nanostructures and low-dimensional systems. Nanoscale Microscale Thermophys. Eng. 16, 79–116 (2012).  https://doi.org/10.1080/15567265.2012.667514 CrossRefGoogle Scholar
  44. Slotman, G.J., Fasolino, A.: Structure, stability and defects of single layer hexagonal BN in comparison to graphene. J. Phys. Condens. Matter (2013).  https://doi.org/10.1088/0953-8984/25/4/045009 Google Scholar
  45. Soldano, C., Mahmood, A., Dujardin, E.: Production, properties and potential of graphene. Carbon 48, 2127–2150 (2010).  https://doi.org/10.1016/j.carbon.2010.01.058 CrossRefGoogle Scholar
  46. Son, Y.-W., Cohen, M.L., Louie, S.G.: Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).  https://doi.org/10.1038/nature05180 CrossRefGoogle Scholar
  47. Song, L., Ci, L., Lu, H., Sorokin, P.B., Jin, C., Ni, J., Kvashnin, A.G., Kvashnin, D.G., Lou, J., Yakobson, B.I., Ajayan, P.M.: Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010).  https://doi.org/10.1021/nl1022139 CrossRefGoogle Scholar
  48. Stewart, D.A., Savić, I., Mingo, N.: First-principles calculation of the isotope effect on boron nitride nanotube thermal conductivity. Nano Lett. 9, 81–84 (2009).  https://doi.org/10.1021/nl802503q CrossRefGoogle Scholar
  49. Tabarraei, A.: Thermal conductivity of monolayer hexagonal boron nitride nanoribbons. Comput. Mater. Sci. 108, 66–71 (2015).  https://doi.org/10.1016/j.commatsci.2015.06.006 CrossRefGoogle Scholar
  50. Tersoff, J.: Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879–2882 (1988a).  https://doi.org/10.1103/physrevlett.61.2879 CrossRefGoogle Scholar
  51. Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B. 37, 6991–7000 (1988b).  https://doi.org/10.1103/physrevb.37.6991 CrossRefGoogle Scholar
  52. Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B. 39, 5566–5568 (1989).  https://doi.org/10.1103/PhysRevB.39.5566 CrossRefGoogle Scholar
  53. Williams, J.R., DiCarlo, L., Marcus, C.M.: Quantum hall effect in a graphene p-n junction. Science 317, 638–641 (2007).  https://doi.org/10.1126/science.1144657 CrossRefGoogle Scholar
  54. Yang, K., Chen, Y., D’Agosta, R., Xie, Y., Zhong, J., Rubio, A.: Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons. Phys. Rev. B. 86, 1–8 (2012).  https://doi.org/10.1103/PhysRevB.86.045425 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringGebze Technical UniversityGebzeTurkey

Personalised recommendations