Advertisement

Stability analysis of a capacitive micro-resonator with embedded pre-strained SMA wires

  • Moahmmad Fathalilou
  • Ghader Rezazadeh
  • Aynaz Mohammadian
Article
  • 26 Downloads

Abstract

This paper presents a study on the effects of the SMA wires’ characteristics on tuning the stability of a capacitive micro-resonator. In the proposed model, pre-strained SMA wires have been embedded in a double clamped resonant microbeam which is actuated electrostatically. The governing equations of the system have been introduced and then an eigen-value problem has been adopted to investigate stability. Galerkin-based numerical methods have been used to solve the governing equation of motion for obtaining the motion trajectories of the beam. The effects of the number of SMA wires, their diameter, pre-strain and temperature on the pull-in instability and frequency response of the resonator have been shown. Critical values of recovery stress and SMA temperature for avoiding instability, with and without applying DC voltage have been obtained. The results have shown that by changing each of the SMA parameters, one can reach a needed magnitude of recovery stress as well as transmitted longitudinal force to the host beam, and consequently control and tune the stability and resonance frequency of the micro-resonator.

Keywords

MEMS SMA Electrostatic Resonator Stability 

References

  1. Abbasnejad, B., Rezazadeh, G.: Mechanical behavior of a FGM micro-beam subjected to a nonlinear electrostatic pressure. Int. J. Mech. Mater. Des. 8, 381–392 (2012)CrossRefGoogle Scholar
  2. Asadi, H., Bodaghi, M., Shakeri, M., Aghdam, M.M.: An analytical approach for nonlinear vibration and thermal stability of shape memory alloy hybrid laminated composite beams. Eur. J. Mech. A/Solids 42, 454–468 (2013)CrossRefzbMATHGoogle Scholar
  3. Asadi, H., Kiani, Y., Shakeri, M., Eslami, M.R.: Exact solution for nonlinear thermal stability of hybrid laminated composite Timoshenko beams reinforced with SMA fibers. Compos. Struct. 108, 811–822 (2014a)CrossRefGoogle Scholar
  4. Asadi, H., Eynbeygi, M., Wang, Q.: Nonlinear thermal stability of geometrically imperfect shape memory alloy hybrid laminated composite plates. Smart Mater. Struct. 23, 1–13 (2014b)Google Scholar
  5. Asadi, H., Bodaghi, M., Shakeri, M., Aghdam, M.M.: Nonlinear dynamics of SMA-fiber-reinforced composite beams subjected to a primary/secondary-resonance excitation. Acta Mech. 226(2), 437–455 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Azizi, S., Rezazadeh, G., Ghazavi, M.R., Khadem, S.E.: Stabilizing the pull-in instability of an electro-statically actuated micro-beam using piezoelectric actuation. Appl. Math. Model. 35(10), 4796–4815 (2011)CrossRefzbMATHGoogle Scholar
  7. Azizi, S., Ghazavi, M.R., Khadem, S.E., Rezazadeh, G., Cetinkaya, C.: Application of piezoelectric actuation to regularize the chaotic response of an electrostatically actuated micro-beam. Nonlinear Dyn. 73(1–2), 853–867 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Azizi, S., Ghazavi, M.R., Rezazadeh, G., Ahmadian, I., Cetinkaya, C.: Tuning the primary resonances of a micro resonator, using piezoelectric actuation. Nonlinear Dyn. 76(1), 839–852 (2014)CrossRefzbMATHGoogle Scholar
  9. Birman, V.: Theory and comparison of the effect of composite and shape memory alloy stiffeners on stability of composite shells and plates. Int. J. Mech. Sci. 39, 1139–1149 (1997)CrossRefzbMATHGoogle Scholar
  10. Brinson, L.C.: One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J. Intell. Mater. Syst. Struct. 4(2), 229–242 (1993)CrossRefGoogle Scholar
  11. Brinson, L.C., Huang, M.S., Boller, C., Brand, W.: Analysis of controlled beam deflections using SMA wires. J. Intell. Mater. Syst. Struct. 8, 12–25 (1997)CrossRefGoogle Scholar
  12. Cosserat, E., Cosserat, F., Theorie des Corps Deformables, Paris, Librairie Scientifique A. Hermann et. Fils (1909)Google Scholar
  13. Dos Reis, R.P.B., Souto, C.R., Araújo, C.J., De Araujo, C.J., Silva, A.A., Da Silva, E.P.: Vibration attenuation in an epoxy smart composite beam with embedded Ni–Ti shape memory wires. Mater. Sci. Forum 643, 7–13 (2010)CrossRefGoogle Scholar
  14. Eringen, A.C.: Linear theory of micropolar elasticity. J. Appl. Math. Mech 15, 909–924 (1966)MathSciNetzbMATHGoogle Scholar
  15. Fathalilou, M., Sadeghi, M., Rezazadeh, G.: Nonlinear behavior of capacitive micro-beams based on strain gradient theory. J. Mech. Sci. Technol. 28, 1141–1151 (2014a)CrossRefGoogle Scholar
  16. Fathalilou, M., Sadeghi, M., Rezazadeh, G.: Gap dependent bifurcation behavior of a nano-beam subjected to a nonlinear electrostatic pressure. Lat. Am. J. Solids. Struct. 11(13), 2426–2443 (2014b)CrossRefGoogle Scholar
  17. Fathalilou, M., Sadeghi, M., Rezazadeh, G.: Micro-inertia effects on the dynamic characteristics of micro-beams considering the couple stress theory. Mech. Res. Commun. 60, 74–80 (2014c)CrossRefGoogle Scholar
  18. Ghazavi, M.R., Rezazadeh, G., Azizi, S.: Pure parametric excitation of a micro cantilever beam actuated by piezoelectric layers. Appl. Math. Model. 34(12), 4196–4207 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Guo, J.G., Zhao, Y.P.: Dynamic stability of electrostatic torsional actuators with van der Waals effect. Int. J. Solids Struct. 43, 675–685 (2006)CrossRefzbMATHGoogle Scholar
  20. Jani, J.M., Leary, M., Subic, A., Gibson, M.: A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014)CrossRefGoogle Scholar
  21. Krylov, S.: Lyapunov exponents as a criterion for the dynamic pull-in instability of electrostatically actuated microstructures. Int. J. Non Linear Mech. 42, 626–642 (2007)CrossRefGoogle Scholar
  22. Kuo, S.Y., Shiau, L.C., Chen, K.H.: Buckling analysis of shape memory reinforced composite laminates. Compos. Struct. 90, 188–195 (2009)CrossRefGoogle Scholar
  23. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1997)Google Scholar
  24. Lam, D., Yang, F., Chong, A.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)CrossRefzbMATHGoogle Scholar
  25. Lau, K.T.: Vibration characteristics of SMA composite beams with different boundary conditions. Mater. Des. 23, 741–749 (2002)CrossRefGoogle Scholar
  26. Lee, W.J., Weber, B., Feltrin, G., Czaderski, C., Motavalli, M., Leinenbach, C.: Stress recovery behavior of an Fe–Mn–Si–Cr–Ni–VC shape memory alloy used for prestressing. Smart Mater. Struct. (2013).  https://doi.org/10.1088/0964-1726/22/12/125037 Google Scholar
  27. Lin, W.H., Zhao, Y.P.: Dynamics behavior of nanoscale electrostatic actuators. Chin. Phys. Lett. 20(11), 2070–2073 (2003)CrossRefGoogle Scholar
  28. Malekzadeh, K., Mozafari, A., Ashenai Ghasemi, F.: Free vibration response of a multilayer smart hybrid composite plate with embedded SMA wires. Lat. Am. J. Solids. Stru. 11, 279–298 (2014)CrossRefGoogle Scholar
  29. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arc. Ration. Mech. Anal. 11, 415–448 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Nix, W., Gao, H.: Indentation size effects in crystalline materials: a low for strain gradient plasticity. J. Mech. Phys. Solids 46( 3), 411–425 (1998)CrossRefzbMATHGoogle Scholar
  31. Ostachowicz, W., Krawczuk, M., Zak, A.: Natural frequencies of multi-layer composite plate with embedded shape memory alloy wires. J. Intell. Mater. Syst. Struct. 9(3), 232–237 (1998)CrossRefzbMATHGoogle Scholar
  32. Ostachowicz, W., Krawczuk, M., Zak, A.: Natural frequencies of a multilayer composite plate with shape memory alloy wires. Finite Elem. Anal. Design. 32(2), 71–83 (1999)CrossRefzbMATHGoogle Scholar
  33. Osterberg, P.M., Senturia, S.D.: M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J. Microelectromech. S. 6, 107–118 (1997)CrossRefGoogle Scholar
  34. Park, J.S., Kim, J.H., Moon, S.H.: Vibration of thermally post-buckeld composite plates embedded with shape memory alloy fibers. Compos. Struct. 63, 179–188 (2004)CrossRefGoogle Scholar
  35. Rezazadeh, G., Fathalilou, M., Shabani, R.: Static and dynamic stabilities of a microbeam actuated by a piezoelectric voltage. Microsyst. Technol. 15, 1785–1791 (2009)CrossRefGoogle Scholar
  36. Rezazadeh, G., Fathalilou, M., Sadeghi, M.: Pull-in voltage of electrostatically-actuated microbeams in terms of lumped model pull-in voltage using novel design corrective coefficients. Sens. Imaging: Int. J. 12, 117–131 (2011)CrossRefGoogle Scholar
  37. Senturia, S.: Microsystem Design. Kluwer, Norwell (2001)Google Scholar
  38. Sohn, J.W., Han, Y.M., Choi, S.B., Lee, Y.S., Han, M.S.: Vibration and position tracking control of a flexible beam using SMA wire actuators. J. Vib. Control 15, 263–281 (2009)MathSciNetCrossRefGoogle Scholar
  39. Toupin, R.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  40. Voigt, W.: Theoritiscke studien uber die elastizitats verhaltnisse der krystalle. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft 34, 3–51 (1887)Google Scholar
  41. Voyiadjis, G., Abu Al-Rub, R.: Gradient plasticity theory with a variable length-scale parameter. Int. J. Solids Struct. 42, 3998–4029 (2005)CrossRefzbMATHGoogle Scholar
  42. Zainal, M.A., Sahlan, S., Ali, M.S.M.: Micromachined shape-memory-alloy microactuators and their application in biomedical devices. Micromachines 6(7), 879–901 (2015)CrossRefGoogle Scholar
  43. Zhang, R., Ni, Q.Q., Masuda, A., Yamamura, T.: Vibration characteristics of laminated composite plates with embedded shape memory alloys. Compos. Struct. 74(4), 389–398 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Moahmmad Fathalilou
    • 1
  • Ghader Rezazadeh
    • 1
  • Aynaz Mohammadian
    • 1
  1. 1.Mechanical Engineering DepartmentUrmia UniversityUrmiaIran

Personalised recommendations