Stochastic analysis of interphase effects on elastic modulus and yield strength of nylon 6/clay nanocomposites

  • Hossein Zolfaghari
  • Mohammad SilaniEmail author
  • Vahid Yaghoubi
  • Mostafa Jamshidian
  • Abdel Magid Hamouda


The multifunctional properties of polymer clay nanocomposites (PCNs) can be related to the interaction of clays, polymer and interphase region. Several experimental, analytical and numerical studies have been conducted to characterize the mechanical behavior of PCNs. The elastic behavior of PCNs is well documented in the literature but their other material properties like yield strength are rather vague. On the other hand, the variation of material parameters and the stochastic nature of interphase region hinder the use of deterministic methods. In this study, a stochastic analysis along with a hierarchical multiscale method is used to analyze the effect of interphase properties on the macroscopic properties of PCNs. Since the interphase layer is expected to be weaker than the polymer matrix, a weakening coefficient is defined to describe the interphase properties based on the matrix properties. This weakening coefficient and the interphase thickness are considered as the stochastic inputs. The elastic modulus and yield strength of nylon 6/clay nanocomposites are calculated using the stochastic multiscale framework. The uncertainty propagation and sobol sensitivity analysis are performed to study the effect of random inputs on the elastic modulus and yield strength of PCNs. Despite the wide range of input variations, the accuracy of the proposed stochastic multiscale framework for the prediction of the PCNs properties is estimated by validating our results against the available experimental data in the literature.


Nylon 6/clay nanocomposites Interphase Computational homogenization Stochastic analysis Sensitivity analysis 



The authors would like to acknowledge the support from Qatar National Research Fund (QNRF), through Grant No. NPRP 7 - 882 - 2 - 326.


  1. Almasi, A., Silani, M., Talebi, H., Rabczuk, T.: Stochastic analysis of the interphase effects on the mechanical properties of clay/epoxy nanocomposites. Compos. Struct. 133, 1302–1312 (2015)CrossRefGoogle Scholar
  2. Belytschko, T., Song, J.H.: Coarse-graining of multiscale crack propagation. Int. J. Numer. Methods Eng. 81(5), 537–563 (2010)zbMATHGoogle Scholar
  3. Chen, Y., Chia, J.Y.H., Su, Z.C., Tay, T.E., Tan, V.B.C.: Mechanical characterization of interfaces in epoxy-clay nanocomposites by molecular simulations. Polymer 54(2), 766–773 (2013)CrossRefGoogle Scholar
  4. Dai, G., Mishnaevsky, L.: Damage evolution in nanoclay-reinforced polymers: a three-dimensional computational study. Compos. Sci. Technol. 74, 67–77 (2013)CrossRefGoogle Scholar
  5. Gajjela, S., Ramachandran, V., Somasekharan, J.: Influence of interphase material and clay particle shape on the effective properties of epoxy-clay nanocomposites. Compos. Part B Eng. 88, 11–18 (2016)CrossRefGoogle Scholar
  6. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Courier Corporation, North Chelmsford (2003)zbMATHGoogle Scholar
  7. Giannelis, E.P.: Polymer layered silicate nanocomposites. Adv. Mater. 8(1), 29–35 (1996)CrossRefGoogle Scholar
  8. Hazanov, S., Huet, C.: Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume. J. Mech. Phys. Solids 42(12), 1995–2011 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  9. He, C., Liu, T., Tjiu, W.C., Sue, H.J., Yee, A.F.: Microdeformation and fracture mechanisms in polyamide-6/organoclay nanocomposites. Macromolecules 41(1), 193–202 (2008)CrossRefGoogle Scholar
  10. Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 326, pp. 131–147. The Royal Society (1972)Google Scholar
  11. Hosseinabadi, H.G., Khederlou, K., Payandehpeyman, J., Bagheri, R.: On variations of the interphase thickness and the slope of strengthening by clay addition in exfoliated polymer-clay nanocomposites. Polymer 90, 302–308 (2016)CrossRefGoogle Scholar
  12. Huskić, M., Žigon, M., Ivanković, M.: Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts. Appl. Clay Sci. 85, 109–115 (2013)CrossRefGoogle Scholar
  13. Jacquelin, E., Adhikari, S., Sinou, J.-J., Friswell, M.I.: Polynomial chaos expansion in structural dynamics: accelerating the convergence of the first two statistical moment sequences. J. Sound Vib. 356, 144–154 (2015)CrossRefGoogle Scholar
  14. Kim, B., Choi, J., Yang, S., Yu, S., Cho, M.: Multiscale modeling of interphase incrosslinked epoxy nanocomposites. Compos. Part B Eng. 120, 128–142 (2017)CrossRefGoogle Scholar
  15. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., Kamigaito, O.: Mechanical properties of nylon 6-clay hybrid. J. Mater. Res. 8(5), 1185–1189 (1993)CrossRefGoogle Scholar
  16. Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials, 3rd edn. Elsevier, New York (2013)zbMATHGoogle Scholar
  17. Netravali, A.N., Mittal, K.L.: Interface/Interphase in Polymer Nanocomposites. Adhesion and Adhesives: Fundamental and Applied Aspects. Wiley, New York (2016)CrossRefGoogle Scholar
  18. Pahlavanpour, M., Moussaddy, H., Ghossein, E., Hubert, P., Lévesque, M.: Prediction of elastic properties in polymer-clay nanocomposites: analytical homogenization methods and 3D finite element modeling. Comput. Mater. Sci. 79, 206–215 (2013)CrossRefGoogle Scholar
  19. Schuëller, G.I., Pradlwarter, H.J.: Uncertain linear systems in dynamics: retrospective and recent developments by stochastic approaches. Eng. Struct. 31, 2507–2517 (2009)CrossRefGoogle Scholar
  20. Sevostianov, I., Kachanov, M.: Effect of interphase layers on the overall elastic and conductive properties of matrix composites. Applications to nanosize inclusion. Int. J. Solids Struct. 44(3), 1304–1315 (2007)CrossRefzbMATHGoogle Scholar
  21. Shokrieh, M.M., Kefayati, A.R., Chitsazzadeh, M.: Fabrication and mechanical properties of clay/epoxy nanocomposite and its polymer concrete. Materi. Des. 40, 443–452 (2012)Google Scholar
  22. Silani, M., Talebi, H., Ziaei-Rad, S., Kerfriden, P., Bordas, S.P., Rabczuk, T.: Stochastic modelling of clay/epoxy nanocomposites. Compos. Struct. 118, 241–249 (2014)CrossRefGoogle Scholar
  23. Song, S., Chen, Y., Su, Z., Quan, C., Tan, V.B.: Effects of clay structural parameters and gallery strength on the damage behavior of epoxy/clay nanocomposites. Compos. Sci. Technol. 85, 50–57 (2013)CrossRefGoogle Scholar
  24. Song, S., Chen, Y., Su, Z., Quan, C., Tan, V.B.: Multiscale modeling of damage progression in nylon 6/clay nanocomposites. Compos. Sci. Technol. 100, 189–197 (2014)CrossRefGoogle Scholar
  25. Xu, W., Zeng, Q., Yu, A.: Young’s modulus of effective clay clusters in polymer nanocomposites. Polymer 53(17), 3735–3740 (2012)CrossRefGoogle Scholar
  26. Yaghoubi, V., Marelli, S., Sudret, B., Abrahamsson, T.: Sparse polynomial chaos expansions of frequency response functions using stochastic frequency transformation. Probab. Eng. Mech. 48, 39–58 (2017)CrossRefGoogle Scholar
  27. Zaïri, F., Gloaguen, J.M., Naït-Abdelaziz, M., Mesbah, A., Lefebvre, J.M.: Study of the effect of size and clay structural parameters on the yield and post-yield response of polymer/clay nanocomposites via a multiscale micromechanical modelling. Acta Materialia 59(10), 3851–3863 (2011)CrossRefGoogle Scholar
  28. Zare, Y.: Modeling the yield strength of polymer nanocomposites based upon nanoparticle agglomeration and polymer-filler interphase. J. Colloid Interface Sci. 467, 165–169 (2016)CrossRefGoogle Scholar
  29. Zare, Y., Garmabi, H.: Thickness, modulus and strength of interphase in clay/polymer nanocomposites. Appl. Clay Sci. 105, 66–70 (2015)CrossRefGoogle Scholar
  30. Zare, Y., Rhee, K.Y.: The mechanical behavior of CNT reinforced nanocomposites assuming imperfect interfacial bonding between matrix and nanoparticles and percolation of interphase regions. Compos. Sci. Technol. 144, 18–25 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Hossein Zolfaghari
    • 1
  • Mohammad Silani
    • 1
    Email author
  • Vahid Yaghoubi
    • 1
  • Mostafa Jamshidian
    • 1
  • Abdel Magid Hamouda
    • 2
  1. 1.Department of Mechanical EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Mechanical and Industrial Engineering Department, College of EngineeringQatar UniversityDohaQatar

Personalised recommendations