Numerical modeling of strain localization in engineering ductile materials combining cohesive models and X-FEM

  • J. Wolf
  • P. Longère
  • J. M. Cadou
  • J. P. Crété
Article
  • 126 Downloads

Abstract

The present work aims at numerically predicting the current residual strength of large engineering structures made of ductile metals against accidental failure. With this aim in view, the challenge consists in reproducing within a unified finite element-based methodology the successive steps of micro-voiding-induced damage, strain localization and crack propagation, if any. A key ingredient for a predictive ductile fracture model is the proper numerical treatment of the critical transition phase of damage-induced strain localization inside a narrow band. For this purpose, the strong discontinuity cohesive model and the eXtended Finite Element Method are combined. A propagation algorithm is proposed and studied in the context of ductile materials. Physics-motivated criteria to pass from the phase of more or less diffuse damage to strain localization and from strain localization to crack propoagation are proposed. Finally, a 2D numerical example is shown to study the performance of the failure analysis model when implemented into an engineering finite element computation code, namely Abaqus.

Keywords

Ductile failure Strain localization EXtended Finite Element Method Cohesive band model 

Notes

Acknowledgements

This work has benefitted from the financial supports of DGA/MRIS (French Ministry of Defense) and Région Midi-Pyrénées.

References

  1. Aravas, N.: On the numerical integration of a class of pressure-dependent plasticity models. Int. J. Numer. Methedos Eng. 24(7), 1395–1416 (1987)CrossRefMATHGoogle Scholar
  2. Barenblatt, G.I.: The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J. Appl. Math. Mech. USS 23(3), 622–636 (1959)MathSciNetCrossRefMATHGoogle Scholar
  3. Bažant, Z.P., Belytschko, T., Chang, T.P.: Continuum theory for strain-softening. J. Eng. Mech. ASCE 110(12), 1666–1692 (1984)CrossRefGoogle Scholar
  4. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45(5), 601–620 (1999)CrossRefMATHGoogle Scholar
  5. Belytschko, T., Fish, J., Engelman, B.E.: A finite element with embedded localization zones. Comput. Methods Appl. Mech. 70, 59–89 (1988)CrossRefMATHGoogle Scholar
  6. Belytschko, T., Chen, H., Xu, J., Zi, G.: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. Numer. Methods Eng. 58(12), 1873–1905 (2003)CrossRefMATHGoogle Scholar
  7. Camacho, G.T., Ortiz, M.: Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33(20), 2899–2938 (1996)CrossRefMATHGoogle Scholar
  8. Camanho, P.P., Dávila, C.G.: Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials. Tech. rep, NASA/TM-2002-211737, Washington D.C. (2002)Google Scholar
  9. Chu, C.C., Needleman, A.: Void nucleation effects in biaxially stretched sheets. J. Eng. Mater. T ASME 102(3), 249–256 (1980)CrossRefGoogle Scholar
  10. Crété, J.P., Longère, P., Cadou, J.M.: Numerical modelling of crack propagation in ductile materials combining the GTN model and X-FEM. Comput. Method Appl. Mech. 275, 204–233 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–108 (1960)CrossRefGoogle Scholar
  12. Elguedj, T., Gravouil, A., Combescure, A.: Appropriate extended functions for x-fem simulation of plastic fracture mechanics. Comput. Methods Appl. Mech. 195(7), 501–515 (2006)CrossRefMATHGoogle Scholar
  13. Geuzaine, C., Remacle, J.F.: Gmsh: a 3-d finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. Gullerud, A.S., Gao, X., Dodds, R.H., Haj-Ali, R.: Simulation of ductile crack growth using computational cells: numerical aspects. Eng. Fract. Mech. 66(1), 65–92 (2000)CrossRefGoogle Scholar
  15. Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: Part i—yield criteria and flow rules for porous ductile media. J. Eng. Mater. T ASME 99(1), 2–15 (1977)CrossRefGoogle Scholar
  16. Haboussa, D., Grégoire, D., Elguedj, T., Maigre, H., Combescure, A.: X-fem analysis of the effects of holes or other cracks on dynamic crack propagations. Int. J. Numer. Methods Eng. 86(4–5), 618–636 (2011)CrossRefMATHGoogle Scholar
  17. Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Princet. Univ. Bull. 13, 49–52 (1902)Google Scholar
  18. Hill, R.: A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6, 236–249 (1958)CrossRefMATHGoogle Scholar
  19. Hillerborg, A., Modéer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 773–782 (1976)CrossRefGoogle Scholar
  20. Huespe, A.E., Needleman, A., Oliver, J., Sanchez, P.J.: A finite thickness band method for ductile fracture analysis. Int. J. Plast. 25(12), 2349–2365 (2009)CrossRefGoogle Scholar
  21. Kanninen, M.F., Popelar, C.L.: Advanced Fracture Mechanics. Oxford University Press, New York (1985)MATHGoogle Scholar
  22. Krupp, U.: Fatigue Crack Propagation in Metals and Alloys: Microstructural Aspects and Modelling Concepts. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  23. Lemaitre, J.: A continuous damage mechanics model for ductile fracture. J. Eng. Mater. T ASME 107(1), 83–89 (1985)CrossRefGoogle Scholar
  24. Li, H., Chandra, N.: Analysis of crack growth and crack-tip plasticity in ductile materials using cohesive zone models. Int. J. Plast. 19(6), 849–882 (2003)CrossRefMATHGoogle Scholar
  25. Longère, P., Dragon, A., Trumel, H., de Resseguier, T., Deprince, X., Petitpas, E.: Modelling adiabatic shear banding via damage mechanics approach. Arch. Mech. 55, 3–38 (2003)MATHGoogle Scholar
  26. Longère, P., Geffroy, A.G., Leblé, B., Dragon, A.: Modeling the transition between dense metal and damaged (microporous) metal viscoplasticity. Int. J. Damage Mech. 21(7), 1020–1063 (2012)CrossRefGoogle Scholar
  27. Mandel, J.: Conditions de stabilité et postulat de drucker. In: Sirieys, P., Kravtchenko, J. (eds.) Rhéologie et mécanique des sols. Springer, Berlin (1966)Google Scholar
  28. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)CrossRefMATHGoogle Scholar
  29. Needleman, A.: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54(3), 525–531 (1987)CrossRefMATHGoogle Scholar
  30. Oliver, J.: Modeling strong discontinuities in solid mechanics viq strain softening constitutive equations. Part 1: fundamentals. Part 2: numerical simulation. Int. J. Numer. Methods Eng. 39, 3575–3624 (1996)CrossRefMATHGoogle Scholar
  31. Ortiz, M., Leroy, Y., Needleman, A.: A finite element method for localized failure analysis. Comput. Methods Appl. Mech. 61, 189–214 (1987)CrossRefMATHGoogle Scholar
  32. Pijaudier-Cabot, G., Bažant, Z.: Nonlocal damage theory. J. Eng. Mech. ASCE 113(10), 1512–1533 (1987)CrossRefMATHGoogle Scholar
  33. Pourmodheji, R., Mashayekhi, M.: Improvement of the extended finite element method for ductile crack growth. Mater. Sci. Eng. 551, 255–271 (2012)CrossRefGoogle Scholar
  34. Pugno, N., Ciavarella, M., Cornetti, P., Carpinteri, A.: A generalized paris law for fatigue crack growth. J. Mech. Phys. Solids 54(7), 1333–1349 (2006)CrossRefMATHGoogle Scholar
  35. Rousselier, G.: Ductile fracture models and their potential in local approach of fracture. Nucl. Eng. Des. 105(1), 97–111 (1987)CrossRefGoogle Scholar
  36. Siegmund, T., Brocks, W.: A numerical study on the correlation between the work of separation and the dissipation rate in ductile fracture. Eng. Fract. Mech. 67(2), 139–154 (2000)CrossRefGoogle Scholar
  37. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity, vol. 7. Springer, Berlin (2006)MATHGoogle Scholar
  38. Sukumar, N., Chopp, D.L., Moran, B.: Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Eng. Fract. Mech. 70(1), 29–48 (2003)CrossRefGoogle Scholar
  39. Thomas, T.Y.: Extended compatibility conditions for the study of surfaces of discontinuity in continuum mechanics. J. Math. Mech. 6, 311–322 (1957)MathSciNetMATHGoogle Scholar
  40. Turon, A., Davila, C.G., Camanho, P.P., Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74, 1665–1682 (2007)CrossRefGoogle Scholar
  41. Tvergaard, V.: Influence of voids on shear band instabilities under plane strain conditions. Int. J. Fract. 17(4), 389–407 (1981)CrossRefGoogle Scholar
  42. Tvergaard, V., Hutchinson, J.W.: The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J. Mech. Phys. Solids 40, 1377–1397 (1992)CrossRefMATHGoogle Scholar
  43. Wells, G.N., Sluys, L.J.: A new method for modelling cohesive cracks using finite elements. Int. J. Numer. Methods Eng. 50(12), 2667–2682 (2001)CrossRefMATHGoogle Scholar
  44. Westergaard, H.M.: Bearing pressures and cracks. J. Appl. Mech. 61, A49–53 (1939)Google Scholar
  45. Xu, X.P., Needleman, A.: Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 42(9), 1397–1434 (1994)CrossRefMATHGoogle Scholar
  46. Zi, G., Belytschko, T.: New crack-tip elements for xfem and applications to cohesive cracks. Int. J. Numer. Methods Eng. 57(15), 2221–2240 (2003)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • J. Wolf
    • 1
  • P. Longère
    • 1
  • J. M. Cadou
    • 2
  • J. P. Crété
    • 3
  1. 1.Université de ToulouseISAE-SUPAERO, Institut Clément Ader (CNRS 5312)ToulouseFrance
  2. 2.Université Européenne de BretagneUBS, Institut de Recherche Dupuy de Lôme (CNRS 3744)LorientFrance
  3. 3.Institut Polytechnique Grand ParisSUPMECA, QUARTZ (EA 7393)Saint-OuenFrance

Personalised recommendations