An augmented incompressible material point method for modeling liquid sloshing problems

  • Fan Zhang
  • Xiong Zhang
  • Yan Liu


The incompressible material point method was proposed for modeling the free surface flow problems based on the operator splitting technique which decouples the solution of the velocity and the pressure in our previous work. To further model the coupling problems between the incompressible fluid and the moving irregular solid bodies, an augmented incompressible material point method is proposed in this paper based on the energy minimization form of operator splitting technique. The interaction between the fluid and the solid is taken into account via the work done by the fluid pressure on the solid bodies. By minimizing the total work done by the fluid pressure, volume-weighted pressure Poisson equations are obtained. The proposed method is validated with liquid sloshing in a rectangular tank subjected to various base-excitations, and is then used to study the optimal height of baffles mounted on the bottom of the tank to mitigate the sloshing wave.


Material point method Incompressible flow Liquid sloshing Optimal height of baffles 



This work was supported by the National Natural Science Foundation of China (Grant No. 11272180).


  1. Batty, C., Bertails, F., Bridson, R.: A fast variational framework for accurate solid-fluid coupling. In: ACM Transactions on Graphics (TOG), vol. 26, p. 100. ACM (2007)Google Scholar
  2. Burghardt, J., Leavy, B., Guilkey, J., Xue, Z., Brannon, R.: Application of Uintah-MPM to shaped charge jet penetration of aluminum. In: IOP Conference Series: Materials Science and Engineering, vol. 10, p. 012223. IOP Publishing (2010)Google Scholar
  3. Calderer, R., Zhu, L., Gibson, R., Masud, A.: Residual-based turbulence models and arbitrary Lagrangian–Eulerian framework for free surface flows. Math. Model. Methods Appl Sci. 25(12), 2287–2317 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Chen, B.F., Nokes, R.: Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular tank. J. Comput. Phys. 209(1), 47–81 (2005)CrossRefzbMATHGoogle Scholar
  5. Chen, J., Beraun, J.: A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput. Methods Appl. Mech. Eng. 190(1), 225–239 (2000)CrossRefzbMATHGoogle Scholar
  6. Chen, Z., Hu, W., Shen, L.M., Xin, X., Brannon, R.: An evaluation of the MPM for simulating dynamic failure with damage diffusion. Eng. Fract. Mech. 69, 1873–1890 (2002)CrossRefGoogle Scholar
  7. Chen, Z., Zong, Z., Li, H., Li, J.: An investigation into the pressure on solid walls in 2D sloshing using SPH method. Ocean Eng. 59, 129–141 (2013)CrossRefGoogle Scholar
  8. Chen, Z., Zong, Z., Liu, M.B., Li, H.T.: A comparative study of truly incompressible and weakly compressible SPH methods for free surface incompressible flows. Int. J. Numer. Methods Fluids 73(9), 813–829 (2013)MathSciNetGoogle Scholar
  9. Chen, Z.P., Qiu, X.M., Zhang, X., Lian, Y.P.: Improved coupling of finite element method with material point method based on a particle-to-surface contact algorithm. Comput. Methods Appl. Mech. Eng. 293(15), 1–19 (2015)MathSciNetCrossRefGoogle Scholar
  10. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22(104), 745–762 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Colin, F., Egli, R., Lin, F.Y.: Computing a null divergence velocity field using smoothed particle hydrodynamics. J. Comput. Phys. 217(2), 680–692 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Cummins, S.J., Rudman, M.: An SPH projection method. J. Comput. Phys. 152(2), 584–607 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Faltinsen, O.M.: A numerical nonlinear method of sloshing in tanks with two-dimensional flow. J. Ship Res. 22(3), 193–202 (1978)Google Scholar
  14. Faltinsen, O.M., Rognebakke, O.F., Lukovsky, I.A., Timokha, A.N.: Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. J. Fluid Mech. 407, 201–234 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Faltinsen, O.M., Timokha, A.N.: Sloshing, pp. 125–126 (2009)Google Scholar
  16. Fang, J., Parriaux, A.: A regularized lagrangian finite point method for the simulation of incompressible viscous flows. J. Comput. Phys. 227(20), 8894–8908 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Foster, N., Fedkiw, R.: Practical animation of liquids. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 23–30. ACM (2001)Google Scholar
  18. Gilabert, F.A., Cantavella, V.C., Sanchez, E., Mallol, G.: Modelling fracture process in ceramic materials using the Material Point Method. Eur. Phys. Lett. 96, 24002 (2011)CrossRefGoogle Scholar
  19. Gong, K., Shao, S., Liu, H., Wang, B., Tan, S.K.: Two-phase sph simulation of fluid-structure interactions. J. Fluids Struct. 65, 155–179 (2016)CrossRefGoogle Scholar
  20. Goudarzi, M.A., Sabbagh-Yazdi, S.R.: Investigation of nonlinear sloshing effects in seismically excited tanks. Soil Dyn. Earthq. Eng. 43, 355–365 (2012)CrossRefGoogle Scholar
  21. Gui, Q., Dong, P., Shao, S.: Numerical study of ppe source term errors in the incompressible sph models. Int. J. Numer. Meth. Fluids 77(6), 358–379 (2015)MathSciNetCrossRefGoogle Scholar
  22. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys. Fluids 8, 2182–2189 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  23. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)CrossRefzbMATHGoogle Scholar
  24. Huang, P., Zhang, X., Ma, S.: Shared memory OpenMP parallelization of explicit mpm and its application to hypervelocity impact. CMES Comput. Model. Eng. Sci. 38, 119–147 (2008)zbMATHGoogle Scholar
  25. Huang, P., Zhang, X., Ma, S., Huang, X.: Contact algorithms for the material point method in impact and penetration simulation. Int. J. Numer. Methods Eng. 85(4), 498–517 (2011)CrossRefzbMATHGoogle Scholar
  26. Hughes, T.J., Liu, W.K., Zimmermann, T.K.: Lagrangian-eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329–349 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., Teschner, M.: Implicit incompressible SPH. IEEE Trans. Vis. Comput. Graph. 20(3), 426–435 (2014)CrossRefGoogle Scholar
  28. Kolaei, A., Rakheja, S., Richard, M.J.: A coupled multimodal and boundary-element method for analysis of anti-slosh effectiveness of partial baffles in a partly-filled container. Comput. Fluids 107, 43–58 (2015)MathSciNetCrossRefGoogle Scholar
  29. Komatsu, K.: Non-linear sloshing analysis of liquid in tanks with arbitrary geometries. Int. J. Non-linear Mech. 22(3), 193–207 (1987)CrossRefzbMATHGoogle Scholar
  30. Koshizuka, S., Oka, Y.: Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123(3), 421–434 (1996)CrossRefGoogle Scholar
  31. Lee, E.S., Moulinec, C., Xu, R., Violeau, D., Laurence, D., Stansby, P.: Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J. Comput. Phys. 227(18), 8417–8436 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  32. Li, J.G., Hamamoto, Y., Liu, Y., Zhang, X.: Sloshing impact simulation with material point method and its experimental validations. Comput. Fluids 103, 86–99 (2014)MathSciNetCrossRefGoogle Scholar
  33. Lian, Y.P., Liu, Y., Zhang, X.: Coupling of membrane element with material point method for fluid-membrane interaction problems. Int. J. Mech. Mater. Des. 10(2), 199–211 (2014)CrossRefGoogle Scholar
  34. Lian, Y.P., Zhang, X., Zhang, F., Cui, X.X.: Tied interface grid material point method for problems with localized extreme deformation. Int. J. Impact Eng. 70, 50–61 (2014)CrossRefGoogle Scholar
  35. Lian, Y.P., Zhang, X., Zhou, X., Ma, Z.T.: A FEMP method and its application in modeling dynamic response of reinforced concrete subjected to impact loading. Comput. Methods Appl. Mech. Eng. 200(17–20), 1659–1670 (2011)CrossRefzbMATHGoogle Scholar
  36. Liu, M., Shao, J., Chang, J.: On the treatment of solid boundary in smoothed particle hydrodynamics. Sci. China Technol. Sci. 55(1), 244–254 (2012)CrossRefGoogle Scholar
  37. Liu, P., Liu, Y., Zhang, X.: Internal-structure-model based simulation research of shielding properties of honeycomb sandwich panel subjected to high-velocity impact. Int. J. Impact Eng. 77, 120–133 (2015)CrossRefGoogle Scholar
  38. Liu, P., Liu, Y., Zhang, X.: Simulation of hyper-velocity impact on double honeycomb sandwich panel and its staggered improvement with internal-structure model. Int. J. Mech. Mater. Des. 12(2), 241–254 (2016)MathSciNetCrossRefGoogle Scholar
  39. Ma, S., Zhang, X., Lian, Y.P., Zhou, X.: Simulation of high explosive explosion using adaptive material point method. CMES Comput. Model. Eng. Sci. 39(2), 101–123 (2009)MathSciNetzbMATHGoogle Scholar
  40. Ma, S., Zhang, X., Qiu, X.M.: Comparison study of MPM and SPH in modeling hypervelocity impact problems. Int. J. Impact Eng. 36, 272–282 (2009)CrossRefGoogle Scholar
  41. Ma, Z., Zhang, X., Huang, P.: An object-oriented MPM framework for simulation of large deformation and contact of numerous grains. CMES Comput. Model. Eng. Sci. 55(1), 61–87 (2010)Google Scholar
  42. Mast, C.M., Mackenzie-Helnwein, P., Arduino, P., Miller, G.R., Shin, W.: Mitigating kinematic locking in the material point method. J. Comput. Phys. 231(16), 5351–5373 (2012)MathSciNetCrossRefGoogle Scholar
  43. Miles, J.W.: Resonantly forced surface waves in a circular cylinder. J. Fluid Mech. 149, 15–31 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  44. Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110(2), 399–406 (1994)CrossRefzbMATHGoogle Scholar
  45. Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136(1), 214–226 (1997)CrossRefzbMATHGoogle Scholar
  46. Nairn, J.A.: Numerical implementation of imperfect interfaces. Comput. Mater. Sci. 40, 525–536 (2007)CrossRefGoogle Scholar
  47. Nakayama, T., Washizu, K.: The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems. Int. J. Numer. Methods Eng. 17(11), 1631–1646 (1981)CrossRefzbMATHGoogle Scholar
  48. Okamoto, T., Kawahara, M.: Two-dimensional sloshing analysis by lagrangian finite element method. Int. J. Numer. Methods Fluids 11(5), 453–477 (1990)CrossRefzbMATHGoogle Scholar
  49. Onate, E.: A finite point method in computational mechanics. Int. J. Numer. Methods Eng. 39, 3839–3866 (1996)CrossRefzbMATHGoogle Scholar
  50. Shao, S., Lo, E.Y.: Incompressible sph method for simulating newtonian and non-newtonian flows with a free surface. Adv. Water Resour. 26(7), 787–800 (2003)CrossRefGoogle Scholar
  51. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  52. Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1–2), 179–196 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  53. Tan, H.L., Nairn, J.A.: Hierarchical, adaptive, material point method for dynamic energy release rate calculations. Comput. Methods Appl. Mech. Eng. 191(19–20), 2095–2109 (2002)zbMATHGoogle Scholar
  54. Tang, B., Li, J., Wang, T.: The least square particle finite element method for simulating large amplitude sloshing flows. Acta Mech. Sin. 24(3), 317–323 (2008)CrossRefzbMATHGoogle Scholar
  55. Tran, L.T., Kim, J., Berzins, M.: Solving time-dependent PDEs using the material point method, a case study from gas dynamics. Int. J. Numer. Methods Fluids 62(7), 709–732 (2010)MathSciNetzbMATHGoogle Scholar
  56. Wu, C.H., Faltinsen, O.M., Chen, B.F.: Numerical study of sloshing liquid in tanks with baffles by time-independent finite difference and fictitious cell method. Comput. Fluids 63, 9–26 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  57. Yang, X., Liu, M., Peng, S.: Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability. Comput. Fluids 92, 199–208 (2014)MathSciNetCrossRefGoogle Scholar
  58. York, A.R., Sulsky, D., Schreyer, H.L.: Fluid-membrane interaction based on the material point method. Int. J. Numer. Methods Eng. 48, 901–924 (2000)CrossRefzbMATHGoogle Scholar
  59. Zhang, F., Zhang, X., Sze, K.Y., Lian, Y., Liu, Y.: Incompressible material point method for free surface flow. J. Comput. Phys. 330, 92–110 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  60. Zhang, X., Chen, Z., Liu, Y.: The Material Point Method - A Continuum-Based Particle Method for Extreme Loading Cases. Academic Press, London (2016)Google Scholar
  61. Zhu, Y.N., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. (TOG) 24(3), 965–972 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of Aerospace EngineeringTsinghua UniversityBeijingChina

Personalised recommendations