Heterogeneous and homogenized models for predicting the indentation response of particle reinforced metal matrix composites

Article

Abstract

In this study, three-dimensional heterogeneous and homogenized finite element models are used to predict the indentation response of particle reinforced metal matrix composites (PRMMCs). The matrix is assumed to have elasto-plastic behavior whereas the particles (uniform in size and spherical in shape) are assumed to be harder than the matrix, and possess linear elastic behavior. The particles (25 % by volume) are randomly distributed in the metal matrix. Two modeling approaches are used. In the first approach, the PRMMC is fully replaced by an equivalent homogenous material, and its material properties are obtained through homogenization using representative volume element approach under periodic boundary conditions. In second approach, a small cubical volume under the indenter is modeled as heterogeneous material with randomly distributed particles, whereas the remaining domain is assigned equivalent material properties obtained through homogenization. The elastic material properties obtained through simulations are found within Hashin–Shtrikman bounds. A suitable size cubical volume consisting of heterogeneities under the indenter is established by considering different cubical volumes so as to capture the actual indentation response. The simulations are also carried out for different particle sizes to establish a suitable particle size. These simulations show that the second modeling approach yields harder indentation response as compared to first modeling approach due to the local particle concentration under the indenter.

Keywords

Metal matrix composites RVE Micro-mechanics Indentation response Nonlinear finite element analysis 

Nomenclature

D

Diameter of indenter

d

Diameter of spherical particles

db

Distance from particle center to RVE boundary

dp

Center to center distance of particles

Gi

Shear modulus of phase i

K

Strength coefficient

Ki

Bulk modulus of phase i

l

Length of cubic RVE

n

Strain hardening exponent

PBC

Periodic boundary conditions

RVE

Representative volume element

\(\bar{U}\)

Average strain energy density

ui

Displacement field in i-direction

vi

Volume fraction of phase i

\(x_{1} ,x_{2} ,x_{3}\)

Cartesian coordinates

\(\sigma_{t}\)

True stress

\(\varepsilon^{pl}\)

True plastic strain

\(\sigma_{ij} ,\varepsilon_{ij}\)

Local stress and strain field

\(\left\langle {\sigma_{ij} } \right\rangle ,\left\langle {\varepsilon_{ij} } \right\rangle\)

Macroscopic stress and strain

Notes

Acknowledgments

This work is performed under the doctoral fellowship program of Ministry of Human Resource Development (MHRD), New Delhi, Government of India, and it does not receive any funding from any other source.

References

  1. Agarwal, A., Singh, I.V., Mishra, B.K.: Evaluation of elastic properties of interpenetrating phase composites by mesh-free method. J. Compos. Mater. 47(11), 1407–1423 (2012)CrossRefGoogle Scholar
  2. António, C.C.: Self-adaptation procedures in genetic algorithms applied to the optimal design of composite structures. Int. J. Mech. Mater. Des. 5(3), 289–302 (2009)CrossRefGoogle Scholar
  3. Appendino, P., Badini, C., Marino, F., Tomasi, A.: 6061 Aluminum alloy-SiC particulate composite: a comparison between aging behavior in T4 and T6 treatments. Mater. Sci. Eng., A 135, 275–279 (1991)CrossRefGoogle Scholar
  4. Aslantaş, K., Ergun, E., Tasgetiren, S.: A numerical model for calculation of stress intensity factors in particle-reinforced metal-matrix composites. Int. J. Mech. Mater. Des. 3(2), 201–208 (2006)CrossRefMATHGoogle Scholar
  5. Ayyar, A., Chawla, N.: Microstructure-based modeling of crack growth in particle reinforced composites. Compos. Sci. Technol. 66(13), 1980–1994 (2006)CrossRefGoogle Scholar
  6. Bucaille, J.L., Stauss, S., Felder, E., Michler, J.: Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51(6), 1663–1678 (2003)CrossRefGoogle Scholar
  7. Burla, R.K., Kumar, A.V., Sankar, B.V.: Implicit boundary method for determination of effective properties of composite microstructures. Int. J. Solids Struct. 46(11), 2514–2526 (2009)CrossRefMATHGoogle Scholar
  8. Cavalcante, M.A., Pindera, M.J.: Finite-volume enabled transformation field analysis of periodic materials. Int. J. Mech. Mater. Des. 9(2), 153–179 (2013)CrossRefGoogle Scholar
  9. Cesari, F., Furgiuele, F.M., Maletta, C.: The determination of stress distribution and elastic properties for heterogeneous materials with hybrid finite element. Int. J. Mech. Mater. Des. 2(1–2), 1–13 (2005)CrossRefGoogle Scholar
  10. Chatterjee, S., Madhusoodanan, K., Singh, R.N., Panwar, S., Kayal, J.N.: Nondestructive measurement of mechanical properties of Zr 2.5 wt% Nb pressure tube. In: 21st International Conference on Structural Mechanics in Reactor Technology (SMiRT 21). Div-VIII: Paper ID#292, New Delhi (2011)Google Scholar
  11. Chawla, K.K., Esmaeili, A.H., Datye, A.K., Vasudevan, A.K.: Effect of homogeneous/heterogeneous precipitation on aging behavior of SiCp/Al 2014 composite. Scripta Metall. Mater. 25(6), 1315–1319 (1991)CrossRefGoogle Scholar
  12. Chawla, N., Chawla, K.K.: Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites. J. Mater. Sci. 41(3), 913–925 (2006)CrossRefMathSciNetGoogle Scholar
  13. Cseh, G., Bar, J., Gudladt, H.J., Lendvai, J., Juhasz, A.: Indentation creep in short fiber-reinforced metal matrix composite. Mater. Sci. Eng., A 272(1), 145–151 (1999)CrossRefGoogle Scholar
  14. Ekici, R., Apalak, M.K., Yildirim, M., Nair, F.: Effects of random particle dispersion and size on the indentation behavior of SiC particle reinforced metal matrix composites. Mater. Des. 31(6), 2818–2833 (2010)CrossRefGoogle Scholar
  15. Ekici, R., Apalak, M.K., Yildirim, M., Nair, F.: Simulated and actual micro-structural models on the indentation behaviors of particle reinforced metal matrix composites. Mater. Sci. Eng., A 606, 290–298 (2014)CrossRefGoogle Scholar
  16. Galli, M., Cugnoni, J., Botsis, J.: Numerical and statistical estimates of the representative volume element of elastoplastic random composites. Eur. J. Mech. A/Solids 33, 31–38 (2012)CrossRefGoogle Scholar
  17. Galvanetto, U., Aliabadi, M.F. (eds.): Multiscale Modeling in Solid Mechanics: Computational Approaches. Imperial College Press, London (2009)MATHGoogle Scholar
  18. Gouldstone, A., Chollacoop, N., Dao, M., Li, J., Minor, A.M., Shen, Y.L.: Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Mater. 55(12), 4015–4039 (2007)CrossRefGoogle Scholar
  19. Hashin, Z.: The elastic moduli of heterogeneous materials. J. Appl. Mech. 29(1), 143–150 (1962)CrossRefMATHMathSciNetGoogle Scholar
  20. Hashin, Z., Shtrikman, S.: A variational approach to the theory of elastic behavior of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)CrossRefMATHMathSciNetGoogle Scholar
  21. Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13–14), 3647–3679 (2003)CrossRefMATHGoogle Scholar
  22. Kari, S., Berger, H., Rodriguez-Ramos, R., Gabbert, U.: Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles. Compos. Struct. 77(2), 223–231 (2007)CrossRefGoogle Scholar
  23. Kumar, S., Singh, I.V., Mishra, B.K.: A multigrid coupled (FE-EFG) approach to simulate fatigue crack growth in heterogeneous materials. Theor. Appl. Fract. Mech. 72, 121–135 (2014)CrossRefGoogle Scholar
  24. Kumar, S., Singh, I.V., Mishra, B.K.: A homogenized XFEM approach to simulate fatigue crack growth problems. Comput. Struct. 150, 1–22 (2015)CrossRefGoogle Scholar
  25. Kundalwal, S.I., Ray, M.C.: Micromechanical analysis of fuzzy fiber reinforced composites. Int. J. Mech. Mater. Des. 7(2), 149–166 (2011)CrossRefGoogle Scholar
  26. Leggoe, J.W., Hu, X.Z., Swain, M.V., Bush, M.B.: An ultra-micro indentation investigation of aspects of the fracture process in particulate reinforced metal matrix composites. Scripta Metall. Mater. 31(5), 577–582 (1994)CrossRefGoogle Scholar
  27. Maletta, C., Pagnotta, L.: On the determination of mechanical properties of composite laminates using genetic algorithms. Int. J. Mech. Mater. Des. 1(2), 199–211 (2004)CrossRefGoogle Scholar
  28. Northwood, D.O., London, I.M., Bahen, L.E.: Elastic constants of zirconium alloys. J. Nucl. Mater. 55(3), 299–310 (1975)CrossRefGoogle Scholar
  29. Panda, S.P., Panda, S.: Micromechanical finite element analysis of effective properties of a unidirectional short piezoelectric fiber reinforced composite. Int. J. Mech. Mater. Des. 11(1), 41–57 (2015)CrossRefGoogle Scholar
  30. Pereyra, R., Shen, Y.L.: Characterization of particle concentration in indentation deformed metal-ceramic composites. Mater. Charact. 53(5), 373–380 (2004)CrossRefGoogle Scholar
  31. Pereyra, R., Shen, Y.L.: Characterization of indentation-induced ‘Particle Crowding’ in metal matrix composites. Int. J. Damage Mech 14(3), 197–213 (2005)CrossRefGoogle Scholar
  32. Ponte Castañeda, P., Suquet, P.: Nonlinear composites. Adv. Appl. Mech. 34, 171–302 (1998)CrossRefMATHGoogle Scholar
  33. Pramanik, A., Zhang, L.C., Arsecularatne, J.A.: Prediction of cutting forces in machining of metal matrix composites. Int. J. Mach. Tool. Manuf. 46(14), 1795–1803 (2006)CrossRefGoogle Scholar
  34. Pramanik, A., Zhang, L.C., Arsecularatne, J.A.: Micro-indentation of metal matrix composites—an FEM investigation. Key Eng. Mater. 340–341, 563–570 (2007)CrossRefGoogle Scholar
  35. Rahman, A.A.A., El-Shafei, A.G., Mahmoud, F.F.: Influence of surface energy on the nanoindentation response of elastically-layered viscoelastic materials. Int. J. Mech. Mater. Des. 12(2), 193–209 (2016)CrossRefGoogle Scholar
  36. Ray, M.C.: Micromechanics of piezoelectric composites with improved effective piezoelectric constant. Int. J. Mech. Mater. Des. 3(4), 361–371 (2006)CrossRefGoogle Scholar
  37. Rodriguez-Ramos, R., de Medeiros, R., Guinovart-Diaz, R., Bravo-Castillero, J., Otero, J.A., Tita, V.: Different approaches for calculating the effective elastic properties in composite materials under imperfect contact adherence. Compos. Struct. 99, 264–275 (2013)CrossRefGoogle Scholar
  38. Rosenberger, M.R., Forlerer, E., Schvezov, C.E.: Modeling the micro-indentation of metal matrix composites. Mater. Sci. Eng., A 463(1–2), 275–283 (2007)CrossRefGoogle Scholar
  39. Segurado, J., Gonzalez, C., Llorca, J.: A numerical investigation of the effect of particle clustering on the mechanical properties of composites. Acta Mater. 51(8), 2355–2369 (2003)CrossRefGoogle Scholar
  40. Shedbale, A.S., Singh, I.V., Mishra, B.K.: Evaluation of mechanical properties using spherical ball indentation and coupled FE-EFG approach. Mech. Adv. Mater. Struct. 23(7), 832–843 (2016)CrossRefGoogle Scholar
  41. Shen, Y.L., Guo, Y.L.: Indentation response of heterogeneous materials. Model. Simul. Mater. Sci. Eng. 9(5), 391–398 (2001)CrossRefGoogle Scholar
  42. Shen, Y.L., Williams, J.J., Piotrowski, G., Chawla, N., Guo, Y.L.: Correlation between tensile and indentation behavior of particle-reinforced metal matrix composites: an experimental and numerical study. Acta Mater. 49(16), 3219–3229 (2001)CrossRefGoogle Scholar
  43. Sheyka, M., El-Kady, I., Khraishi, T., Taha, M.M.R.: Micro-indentation of metallic photonic crystals: experimental and numerical investigations. Int. J. Mech. Mater. Des. 4(4), 407–418 (2008)CrossRefGoogle Scholar
  44. Shoukry, S.N., Prucz, J.C., Shankaranarayana, P.G., William, G.W.: Microstructure modeling of particulate reinforced metal matrix composites. Mech. Adv. Mater. Struct. 14(6), 499–510 (2007)CrossRefGoogle Scholar
  45. Singh, I.V., Shedbale, A.S., Mishra, B.K.: Material property evaluation of particle reinforced composites using finite element approach. J. Compos. Mater. 50(20), 2757–2771 (2016)CrossRefGoogle Scholar
  46. Suquet, P.: Elements of homogenization theory for inelastic solid mechanics. Homog Tech Compos Media 272, 194–278 (1987)MATHGoogle Scholar
  47. Tang, G., Shen, Y.L., Singh, D.R.P., Chawla, N.: Analysis of indentation-derived effective elastic modulus of metal-ceramic multilayers. Int. J. Mech. Mater. Des. 4(4), 391–398 (2008)CrossRefGoogle Scholar
  48. Xia, Z., Zhou, C., Yong, Q., Wang, X.: On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int. J. Solids Struct. 43(2), 266–278 (2006)CrossRefMATHMathSciNetGoogle Scholar
  49. Xu, L.M., Fan, H., Sze, K.Y., Li, C.: Elastic property prediction by finite element analysis with random distribution of materials for heterogeneous solids. Int. J. Mech. Mater. Des. 3(4), 319–327 (2006)CrossRefGoogle Scholar
  50. Zhang, X.X., Xiao, B.L., Andrä, H., Ma, Z.Y.: Homogenization of the average thermo-elastoplastic properties of particle reinforced metal matrix composites: the minimum representative volume element size. Compos. Struct. 113, 459–468 (2014)CrossRefGoogle Scholar
  51. Zimmerman, R.W.: Hashin-Shtrikman bounds on the Poisson’s ratio of a composite material. Mech. Res. Commun. 19(6), 563–569 (1992)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations