Advertisement

Numerical analysis of quasi-static fracture in functionally graded materials

  • E. Martínez-Pañeda
  • R. Gallego
Article

Abstract

This work investigates the existing capabilities and limitations in numerical modeling of fracture problems in functionally graded materials (FGMs) by means of the well-known finite element code ABAQUS. Quasi-static crack initiation and growth in planar FGMs is evaluated. Computational results of fracture parameters are compared to experimental results and good agreement is obtained. The importance of the numerical fit of the elastic properties in the FE model is analyzed in depth by means of a sensitivity study and a novel method is presented. Several key computational issues derived from the continuous change of the material properties are also addressed and the source code of a user subroutine USDFLD is provided in the Appendix for an effective implementation of the property variation. The crack propagation path is calculated through the extended finite element method and subsequently compared to available experimental data. Suitability of local fracture criteria to simulate crack trajectories in FGMs is discussed and a new crack propagation criterion is suggested.

Keywords

Functionally graded material (FGM) Finite element method (FEM) Fracture mechanics Crack propagation Extended finite element method (X-FEM) 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the Ministry of Science and Innovation of Spain through the Grant DPI2010.21590.CO2.01.

References

  1. Abanto-Bueno, J., Lambros, J.: An experimental study of mixed mode crack initiation and growth in functionally graded materials. Exp. Mech. 46(2), 179–196 (2006)CrossRefGoogle Scholar
  2. ABAQUS.: ABAQUS Version 6.13 Documentation. Dassault Systèmes Simulia Corp, Providence (2013)Google Scholar
  3. Anderson, T.L.: Fracture Mechanics. Fundamentals and Applications, 3rd edn. Taylor and Francis CRC Press, Boca Raton (2005)zbMATHGoogle Scholar
  4. Anlas, G., Santare, M.H., Lambros, J.: Numerical calculation of stress intensity factors in functionally graded materials. Int. J. Frac. 104(2), 131–143 (2000)CrossRefGoogle Scholar
  5. Bao, G., Cai, H.: Delamination cracking in functionally graded coating/metal substrate systems. Acta. Mech. 45(3), 1055–1066 (1997)Google Scholar
  6. Bao, G., Wang, L.: Multiple cracking in functionally graded ceramic/metal coatings. Int. J. Solids. Struct. 32(19), 2853–2871 (1995)CrossRefzbMATHGoogle Scholar
  7. Becker Jr, T.L., Cannon, R.M., Ritchie, R.O.: Finite crack kinking and T-stresses in functionally graded materials. Int. J. Solids. Struct. 38(32–33), 5545–5563 (2001)CrossRefzbMATHGoogle Scholar
  8. Butcher, R.J., Rousseau, C.E., Tippur, H.V.: A functionally graded particulate composite: preparation, measurements and failure analysis. Acta. Mater. 47(1), 259–268 (1999)CrossRefGoogle Scholar
  9. Carrillo-Heian, E.M., Carpenter, R.D., Paulino, G.C., Gibeling, J.G.: Dense layered molybdenum disilicide-silicon carbide functionally graded composites formed by field activated synthesis. J. Am. Ceram. Soc. 84(5), 962–968 (2001)CrossRefGoogle Scholar
  10. Chapa-Cabrera, J., Reimanis, I.E.: Crack deflection in compositionally graded Cu-W composites. Philos. Mag. A. 82(17–18), 3393–3403 (2002a)Google Scholar
  11. Chapa-Cabrera, J., Reimanis, I.E.: Eects of residual stress and geometry on crack kink angles in graded composites. Eng. Fract. Mech. 69(14–16), 1667–1678 (2002b)CrossRefGoogle Scholar
  12. Chen, J., Wu, L., Du, S.: A modified J integral for functionally graded materials. Mech. Res. Commun. 27(3), 301–306 (2000)CrossRefzbMATHGoogle Scholar
  13. Dolbow, J.E., Gosz, M.: On the computation of mixed-mode stress intensity factors in functionally graded materials. Int. J. Solids. Struct. 39(3), 2557–2574 (2002)CrossRefzbMATHGoogle Scholar
  14. Eischen, J.W.: Fracture of nonhomogeneous materials. Int. J. Frac. 34, 3–22 (1987)Google Scholar
  15. Erdogan, F.: Fracture mechanics of functionally graded materials. Compos. Eng. 5(7), 753–770 (1995)CrossRefGoogle Scholar
  16. Gasik, M.M.: Micromechanical modelling of functionally graded materials. Compos. Mater. Sci. 13, 42–55 (1998)CrossRefGoogle Scholar
  17. Gu, P., Asaro, R.J.: Crack deflection in functionally graded materials. Int. J. Solids. Struct. 34(24), 3085–3098 (1997)CrossRefzbMATHGoogle Scholar
  18. Gu, P., Dao, M., Asaro, R.J.: A simplified method for calculating the crack-tip field of functionally graded materials using the domain integral. J. Appl. Mech. Trans. ASME. 34(1), 1–17 (1997)zbMATHGoogle Scholar
  19. Hashin, Z.: Analysis of composite materials—a survey. J. Appl. Mech. Trans. ASME. 50, 481–505 (1983)CrossRefzbMATHGoogle Scholar
  20. Healy, B., Gullerud, A., Koppenhoefer, K., Roy, A., RoyChowdhury, S.: MW.: WARP3D Release 17.3.2 Manual. Univ. of Illinois at Urbana-Champaign, Urbana (2012)Google Scholar
  21. Jedamzik, R., Neubrand, A., Rdel, J.: Characterisation of electrochemically processed graded tungsten/copper composites. Mater. Sci. Forum. 782–7, 308–311 (2000)Google Scholar
  22. Jin, Z.H., Noda, N.: Crack-tip singular fields in nonhomogeneous materials. J. Appl. Mech. Trans. ASME. 61, 738–740 (1994)CrossRefzbMATHGoogle Scholar
  23. Kawasaki, A., Watanabe, R.: Finite element analysis of thermal stress of the metal/ceramic multi-layer composites with compositional gradients. J. Jpn. Inst. Metals 51, 525–529 (1987)Google Scholar
  24. Kim, JH.: Mixed-mode crack propagation in functionally graded materials. PhD thesis, University of Illinois at Urbana-Champaign (2003)Google Scholar
  25. Kim, J.H., Paulino, G.H.: Finite element evaluation of mixed-mode stress intensity factors in functionally graded materials. Int. J. Numer. Methods. Eng. 53(8), 1903–1935 (2002a)CrossRefzbMATHGoogle Scholar
  26. Kim, J.H., Paulino, G.H.: Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. J. Appl. Mech. Trans. ASME. 69(4), 502–514 (2002b)CrossRefzbMATHGoogle Scholar
  27. Kim, J.H., Paulino, G.H.: T-stress, mixed-mode stress intensity factors, and crack initiation angles in functionally graded materials: a unified approach using the interaction integral method. Comput. Method. Appl. Mech. 192(11–12), 1463–1494 (2003)CrossRefzbMATHGoogle Scholar
  28. Krumova, M., Klingshirn, C., Haupert, F., Friedrich, K.: Microhardness studies on functionally graded polymer composites. Compos. Sci. Technol. 61(4), 557–563 (2001)CrossRefGoogle Scholar
  29. Lambros, J., Santare, M.H., Li, H., Sapna III, G.H.: A novel technique for the fabrication of laboratory scale model functionally graded materials. Exp. Mech. 39(3), 184–190 (1999)CrossRefGoogle Scholar
  30. Li, H., Lambros, J., Cheeseman, B.A., Santare, M.H.: Experimental investigation of the quasi-static fracture of functionally graded materials. Int. J. Solids. Struct. 37(27), 3715–3732 (2000)CrossRefzbMATHGoogle Scholar
  31. Marur, P.R., Tippur, H.V.: Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient. Int. J. Solids. Struct. 37(38), 5353–5370 (2000)CrossRefzbMATHGoogle Scholar
  32. Oral, A., Abanto-Bueno, J.L., Lambros, J., Anlas, G.: Crack initiation angles in functionally graded materials under mixed mode loading. AIP Conf. Proc. 973, 248–253 (2008a)CrossRefGoogle Scholar
  33. Oral, A., Lambros, J., Anlas, G.: Crack initiation in functionally graded materials under mixed mode loading: experiments and simulations. J. Appl. Mech. Trans. ASME. 75(5), 0511,101 (2008)Google Scholar
  34. Parameswaran, V., Shukla, V.: Processing and characterisation of a model functionally graded material. J. Mater. Sci. 35, 21–29 (2000)CrossRefGoogle Scholar
  35. Reiter, T., Dvorak, G.J., Tvergaard, V.: Micromechanical models for graded composite materials. J. Mech. Phys. Solids. 45(8), 1281–1302 (1997)CrossRefGoogle Scholar
  36. Remmers, J.J.C., de Borst, R., Needleman, A.: The simulation of dynamic crack propagation using the cohesive segments method. J. Mech. Phys. Solids. 56, 70–92 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  37. Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. Trans. ASME. 35, 379–386 (1968)CrossRefGoogle Scholar
  38. Riveiro, M.A., Gallego, R.: Boundary elements and the analog equation method for the solution of elastic problems in 3-D non-homogeneous bodies. Comput. Meth. Appl. Mech. Eng. 263, 12–19 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  39. Rousseau, C.E., Tippur, H.V.: Compositionally graded materials with cracks normal to the elastic gradient. Acta. Mater. 48, 4021–4033 (2000)CrossRefGoogle Scholar
  40. Santare, M.H., Lambros, J.: Use of graded finite elements to model the behaviour of nonhomogeneous materials. J. Appl. Mech. Trans. ASME. 67, 819–822 (2000)CrossRefzbMATHGoogle Scholar
  41. Shih, C.F., Asaro, R.J.: Elastic-plastic analysis of cracks on bimaterial interfaces: part I small scale yielding. J. Appl. Mech. Trans. ASME. 58(2), 299–316 (1988)CrossRefGoogle Scholar
  42. Song, J.H., Areias, P.M.A., Belytschko, T.: A method for dynamic crack and shear band propagation with phantom nodes. Int. J. Numer. Methods. Eng. 67, 868–893 (2006)CrossRefzbMATHGoogle Scholar
  43. Tilbrook, M.T., Moon, R.J., Hoffman, M.: Crack propagation in graded composites. Compos. Sci. Technol. 65, 201–220 (2005a)CrossRefGoogle Scholar
  44. Tilbrook, M.T., Moon, R.J., Hoffman, M.: Finite element simulations of crack propagation in functionally graded materials under flexural loading. Eng. Fract. Mech. 72(16), 2444–2467 (2005b)CrossRefGoogle Scholar
  45. Uemura, S.: The activities of FGM on new application. Mater. Sci. Forum. 423–425, 1–10 (2003)CrossRefGoogle Scholar
  46. Walters, M.C., Paulino, G.H., Dodds Jr, R.H.: Computation of mixed-mode stress intensity factors for cracks in three-dimensional functionally graded solids. J. Eng. Mech. 132(1), 1–15 (2006)CrossRefGoogle Scholar
  47. Zhang, C., Savadis, A., Savadis, G., Zhu, H.: Transient dynamic analysis of a cracked functionally graded material by a BIEM. Comp. Mater. Sci. 26, 167–174 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Construction and Manufacturing EngineeringUniversity of OviedoGijónSpain
  2. 2.Department of Structural Mechanics, School of Civil EngineeringUniversity of GranadaGranadaSpain

Personalised recommendations