Advertisement

Coupling of membrane element with material point method for fluid–membrane interaction problems

  • Yan-Ping Lian
  • Yan Liu
  • Xiong Zhang
Article

Abstract

This paper proposes a coupled particle–finite element method for fluid–membrane structure interaction problems. The material point method (MPM) is employed to model the fluid flow and the membrane element is used to model the membrane structure. The interaction between the fluid and the membrane structure is handled by a contact method, which is implemented on an Eulerian background grid. Several numerical examples, including membrane sphere interaction, water sphere impact and gas expansion problems, are studied to validate the proposed method. The numerical results show that the proposed method offers advantages of both MPM and finite element method, and it can be used to simulate fluid–membrane interaction problems.

Keywords

Material point method Membrane element Fluid–structure interaction Contact method 

Notes

Acknowledgments

The research described in this paper was financially Supported by the China Postdoctoral Science Foundation (2013M530040), National Basic Research Program of China (2010CB832701), National Natural Science Foundation of China (11272180), and Tsinghua University Initiative Scientific Research Program.

References

  1. Antoci, C., Gallati, M., Sibilla, S.: Numerical simulation of fluid–structure interaction by SPH. Comput. Struct. 85, 879–890 (2007)CrossRefGoogle Scholar
  2. Bardenhagen, S.G., Brackbill, J.U., Sulsky, D.: The material-point method for granular materials. Comput. Methods Appl. Mech. Eng. 187(3–4), 529–541 (2000)CrossRefzbMATHGoogle Scholar
  3. Daneshmand, F., Niroomandi, S.: Natural neighbour Galerkin computation of the vibration modes of fluid–structure systems. Eng. Comput. 24(3–4), 269–287 (2007)CrossRefzbMATHGoogle Scholar
  4. Flanagan, D.P., Belytschko, T.: A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int. J. Numer. Methods Eng. 17, 679–706 (1981)CrossRefzbMATHGoogle Scholar
  5. Gan, Y., Chen, Z., Montgomery-Smith, S.: Improved material point method for simulating the zona failure response in piezo-assisted intracytoplasmic sperm injection. Comput. Model. Eng. Sci. 73(1), 45–76 (2011)zbMATHGoogle Scholar
  6. Gonzalez, D., Cueto, E., Chinesta, F. et al.: A natural element updated Lagrangian strategy for free-surface fluid dynamics. J. Comput. Phys. 223, 127–150 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  7. Hallquist, J.O.: LS-DYNA Theoretical Manual. Livermore Software Technology Corporation, Livermore (1998)Google Scholar
  8. Hu, W., Chen, Z.: A multi-mesh MPM for simulating the meshing process of spur gears. Comput. Struct. 81, 1991–2002 (2003)CrossRefGoogle Scholar
  9. Huang, P., Zhang, X., Ma, S., Huang, X.: Contact algorithms for the material point method in impact and penetration simulation. Int. J. Numer. Methods Eng. 85(4), 498–517 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  10. Hughes, T.J.R., Liu, W.K., Zimmermann, T.K.: Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329–349 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  11. Idelsohn, S.R., Onate, E., Del Pin, F.: The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int. J. Numer. Methods Eng. 61(7), 964–989 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  12. Idelsohn, S.R., Marti, J., Limache, A., Onate, E.: Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the PFEM. Comput. Methods Appl. Mech. Eng. 197(19–20), 1762–1776 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  13. Lee, C.J.K., Noguchi, H., Koshizuka, S.: Fluid–shell structure interaction analysis by coupled particle and finite element method. Comput. Struct. 85, 688–697 (2007)CrossRefGoogle Scholar
  14. Lian, Y.P., Zhang, X., Liu, Y.: Coupling of finite element method with material point method by local multi-mesh contact method. Comput. Methods Appl. Mech. Eng. 200, 3482–3494 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  15. Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods. Eng. 17, 25–76 (2010)CrossRefMathSciNetGoogle Scholar
  16. Luo, H.X., Mittal, R., Zheng, X.D., Bielamowicz, S.A., Walsh, R.J., Hahn, J.K.: An immersed-boundary method for flow–structure interaction in biological systems with application to phonation. J. Comput. Phys. 227(22), 9303–9332 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  17. Ma, Z., Zhang, X., Huang, P.: An object-oriented MPM framework for simulation of large deformation and contact of numerous grains. Comput. Model. Eng. Sci. 55(1), 61–87 (2010)Google Scholar
  18. Rafiee, A., Thiagarajan, K.P.: An SPH projection method for simulating fluid–hypoelastic structure interaction. Comput. Methods Appl. Mech. Eng. 198(33–36), 2785–2795 (2009)CrossRefzbMATHGoogle Scholar
  19. Souli, M., Ouahsine, A., Lewin, L.: ALE formulation for fluid–structure interaction problems. Comput. Methods Appl. Mech. Eng. 190(5–7), 659–675 (2000)CrossRefzbMATHGoogle Scholar
  20. Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1–2), 179–196 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  21. Walhorn, E., Kölke, A., Hübner, B., Dinkler, D.: Fluid–structure coupling within a monolithic model involving free surface flows. Comput. Struct. 83, 2100–2111 (2005)CrossRefGoogle Scholar
  22. York, A.R. II, Sulsky, D., Schreyer, H.L.: Fluid–membrane interaction based on the material point method. Int. J. Numer. Methods Eng. 48, 901–924 (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of AerospaceTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations