Advertisement

A multiscale framework for high-velocity impact process with combined material point method and molecular dynamics

  • Yan Liu
  • Han-Kui Wang
  • Xiong Zhang
Article

Abstract

The equation of state (EOS) plays an important role in high-velocity impact process since phase transformation, melting, and even vaporization may happen under such extreme loading conditions. It is desired to adopt an accurate EOS covering a large range of points in the phase space. This paper proposes a combined molecular dynamics and material point method approach to simulate the high-velocity impact process. The EOS data are first obtained from a series of molecular dynamics computations, and the parameters are fitted. Then the EOS parameters are adopted in the material point method simulation to model the impact process. Simulation results show that the fitted EOS can be very accurate compared to experimental results. The shape of the debris cloud obtained by our multiscale method agrees well with that of the experiments. An empirical equation is also proposed to predict the fraction of melting material in the high-velocity impact process.

Keywords

High-velocity impact Material point method Molecular dynamics Multiscale Equation of state 

Notes

Acknowledgments

Supported by National Natural Science Foundation of China (Grant No. 11102097) and National Basic Research Program of China (Grant No. 2010CB832701).

References

  1. Chen, Z., Feng, R., Xin, X. et al.: A computational model for impact failure with shear-induced dilatancy. Int. J. Numer. Methods Eng. 56, 1979–1997 (2003)zbMATHCrossRefGoogle Scholar
  2. Daw, M.S., Baskes, M.I.: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)CrossRefGoogle Scholar
  3. Gong, W.W., Liu, Y., Zhang, X., Ma, H.: Numerical investigation on dynamical response of aluminum foam subject to hypervelocity impact with material point method. CMES Comput. Model. Eng. Sci. 83(5), 527–545 (2012)Google Scholar
  4. Guo, Z., Yang, W.: MPM/MD handshaking method for multiscale simulation and its application to high energy cluster impacts. Int. J. Mech. Sci. 48(2), 145–159 (2006)zbMATHCrossRefGoogle Scholar
  5. Johnson, R.A.: Analytic nearest-neighbor model for FCC metals. Phys. Rev. B 37(8), 3924–3931 (1988)CrossRefGoogle Scholar
  6. Liu, Y., Zhang, X., Sze, K.Y., Wang, M.: Smoothed molecular dynamics for large step time integration. CMES Comput. Model. Eng. Sci. 20(3), 177–192 (2007)MathSciNetGoogle Scholar
  7. Lu, H., Daphalapurkar, N.P., Wang, B., Roy, S., Komanduri, R.: Multiscale simulation from atomisitic to continuum—coupling molecular dynamics (MD) with the material point method (MPM). Philos. Mag. 86, 2971–2994 (2006)CrossRefGoogle Scholar
  8. Ma, S., Zhang, X., Qiu, X.: Comparison study of MPM and SPH in modeling hypervelocity impact problems. Int. J. Impact Eng. 36, 272–282 (2009)CrossRefGoogle Scholar
  9. Mitchell, A.C., Nellis, W.J.: Shock compression of aluminum, copper, and tantalum. J. Appl. Phys. 52(5), 3363–3374 (1981)CrossRefGoogle Scholar
  10. Pharr, G.M., Oliver, W.C.: Measurement of thin-film mechanical-properties using nanoindentation. MRS Bull. 17(7), 28–33 (1992)Google Scholar
  11. Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)zbMATHCrossRefGoogle Scholar
  12. Rapaport, D.C.: The Art of Molecular Dynamics Simulation, 2nd edn. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  13. Royce, E.B.: A thress-phase equation of state for metals. Tech. rep., Lawrence Livermore National Laboratory (1971)Google Scholar
  14. Shen, L., Chen, Z.: A multi-scale simulation of tungsten film delamination from silicon substrate. Int. J. Solids. Struct. 42, 5036–5056 (2005)zbMATHCrossRefGoogle Scholar
  15. Shen, L., Chen, Z.: A silent boundary scheme with the material point method for dynamic analyses. CMES Comput. Model. Eng. Sci. 7(3), 305–320 (2006)Google Scholar
  16. Shen, L.M.: A rate-dependent damage/decohesion model for simulating glass fragmentation under impact using the material point method. CMES Comput. Model. Eng. Sci. 49, 23-5 (2009)Google Scholar
  17. Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118, 179-196 (1994)MathSciNetzbMATHGoogle Scholar
  18. Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87, 236-252 (1995)zbMATHCrossRefGoogle Scholar
  19. Wang, Y., Chen, D.Q., Zhang, X.W.: Calculated equation of state of Al, Cu, Ta, Mo, and W to 1000 GPa. Phys. Rev. Lett. 84(15), 3220–3223 (2000)CrossRefGoogle Scholar
  20. Zhang, H.W., Wang, K.P., Chen, Z.: Material point method for dynamic analysis of saturated porous media under external contact/impact of solid bodies. Comput. Methods Appl. Mech. Eng. 198, 1456–1472 (2009)zbMATHCrossRefGoogle Scholar
  21. Zhang, X., Liu, Y.: Meshless Methods. Tsinghua University Press, Beijing (2004)Google Scholar
  22. Zhang, X., Sze, K.Y., Ma, S.: An explicit material point finite element method for hyper velocity impact. Int. J. Numer. Methods Eng. 66, 689–706 (2006)zbMATHCrossRefGoogle Scholar
  23. Zukas, J.A.: High Velocity Impact Dynamics. Wiley, New York (1990)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of AerospaceTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.China Special Equipment Inspection and Research InstituteBeijingPeople’s Republic of China

Personalised recommendations