Active constrained layer damping of geometrically nonlinear vibration of rotating composite beams using 1-3 piezoelectric composite



In this paper, an analysis for active constrained layer damping (ACLD) of rotating composite beams undergoing geometrically non linear vibrations has been carried out. Commercially available vertically/obliquely reinforced 1-3 piezoelectric composite (PZC) material has been used as the material of the constraining layer of the ACLD treatment. A finite element (FE) model has been derived to carry out the analysis. The substrate beam is considered thin and hence, first order shear deformation theory (FSDT) and von-Karman type nonlinear strain–displacement relations are used to derive the coupled electromechanical nonlinear FE model. The rotary effect has been suitably modelled by incorporating extensional strain energy due to centrifugal force. The Golla–Hughes–McTavish method has been employed to model the constrained viscoelastic layer of the ACLD treatment in the time domain. The numerical responses revealed that the ACLD treatment with 1-3 PZC constraining layer efficiently performs the task of active damping of geometrically nonlinear vibrations of the rotating composite beams. The effects of the fibre orientation angles of the angle-ply substrate beams and the 1-3 PZC constraining layer on the ACLD of the geometrically nonlinear vibrations have been investigated. Also, the effect of the thickness variations of the 1-3 PZC layer and the viscoelastic constrained layer on the damping characteristics of the overall rotating composite beams has been studied.


Smart structures Piezoelectric composites Rotating composite beams Active damping 


  1. Aboudi, J.: Micromechanical prediction of the effective coefficients of thermo-piezoelectric multiphase composites. J. Intell. Mater. Syst. Struct. 9, 713–722 (1998)CrossRefGoogle Scholar
  2. Baily, T., Hubbard, J.E.: Distributed piezoelectric-polymer active vibration control of a cantilever beam. J. Guid. Control Dyn. 8(5), 605–611 (1985)CrossRefGoogle Scholar
  3. Banerjee, J.R.: Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko Beams. J. Sound Vib. 56(2), 175–185 (2001)Google Scholar
  4. Baz, A., Ro, J.: Active constrained layer damping. In: Proceeding of Damping 93, San Francisco, 1993, p. IBB 1–23Google Scholar
  5. Baz, A., Poh, S.: Performance of an active control system with piezoelectric actuators. J. Sound Vib. 126, 327–343 (1988)CrossRefGoogle Scholar
  6. Baz, A., Ro, J.: Vibration control of plates with active constrained layer damping. Smart Mater. Stuct. 5, 272–280 (1996)CrossRefGoogle Scholar
  7. Baz, A., Ro, J.: Vibration control of rotating beams with active constrained layer damping. Smart Mater. Struct. 10, 112–120 (2001)CrossRefGoogle Scholar
  8. Bennouna, M.M.K.: Nonlinear dynamic behaviour of a clamped–clamped beam with consideration of fatigue life, Ph.D. Thesis, University of Southampton (1982)Google Scholar
  9. Choi, S.-C., Park, J.-S., Kim, J.-H.: Active damping of rotating thin-walled beams using MFC actuators and PVDF sensors. Compos. Struct. 76, 362–374 (2005)CrossRefGoogle Scholar
  10. Crawley, E.F., de Luis, J.: Use of piezoelectric actuators as element of intelligent structures. AIAA J. 25(10), 1373–1385 (1987)CrossRefGoogle Scholar
  11. Dokainish, M.A., Rawtani, S.: Vibration analysis of rotating cantilever plates. Int. J. Numer. Methods Eng. 3, 233–248 (1971)MATHCrossRefGoogle Scholar
  12. Dunn, M.L., Taya, M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. J. Solids Struct. 30(2), 161–175 (1993)MATHCrossRefGoogle Scholar
  13. Fung, E.H.K., Yau, D.T.W.: Vibration characteristics of a rotating flexible arm with ACLD treatment. J. Sound Vib. 269, 165–182 (2003)CrossRefGoogle Scholar
  14. Fung, E.H.K., Zou, J.Q., Lee, H.W.J.: Lagrangian formulation of rotating beam with active constrained layer damping in time domain analysis. J. Mech. Des. 126, 359–364 (2004)CrossRefGoogle Scholar
  15. Golla, D.F., Hughes, P.C.: Dynamics of viscoelastic structures: a time domain, finite element formulations. ASME J. Appl. Mech. 52, 897–906 (1985)MathSciNetMATHCrossRefGoogle Scholar
  16. Ha, S.K., Keilers, C., Chang, F.K.: Finite element analysis of composite structures containing piezoceramic sensors and actuators. AIAA J. 30, 772–780 (1992)MATHCrossRefGoogle Scholar
  17. Hellen, L.C., Kun, L., Chung, L.C.: Piezoelectric ceramic fibre/epoxy 1–3 composite for high frequency ultrasonic transducer application. Mater. Sci. Eng. B99, 29–35 (2003)Google Scholar
  18. Im, S., Atluri, S.N.: Effects of a piezo-actuator on a finitely deformed beam subjected to general loading. AIAA J. 27, 1801–1807 (1989)MATHCrossRefGoogle Scholar
  19. Park, J.-S., Kim, J.-H.: Design and aeroelastic analysis of active rotor blades incorporating single crystal macro fibre composite actuators. Composites B 39, 1011–1025 (2008)CrossRefGoogle Scholar
  20. Kumar, N., Singh, S.P.: Vibration and damping characteristics of beams with active constrained layer treatment under parametric variations. Mater. Des. 30, 4162–4174 (2009)CrossRefGoogle Scholar
  21. Lee, C.K.: Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: governing equations and reciprocal relationships. J. Acoust. Soc. Am. 87, 1144–1158 (1990)CrossRefGoogle Scholar
  22. Lee, S.Y., Kuo, Y.H.: Bending frequency of a rotating Timoshenko beam with general elastically restrained root. J. Sound Vib. 162, 243–250 (1993)MATHCrossRefGoogle Scholar
  23. Lee, T.-S., Lin, Y.-J.: Nonlinear dynamic strain analysis on rotor blade structures with embedded piezoceramic sensors for active vibration control. Mechatronics 8(8), 805–820 (1998)CrossRefGoogle Scholar
  24. Li, F.M., Kishimoto, K., Wang, Y.S., Chen, Z.B., Huang, W.H.: Vibration control of beams with active constrained layer damping. Smart Mater. Struct. 17, 065036 (2008)CrossRefGoogle Scholar
  25. Lim, Y.H., Varadan, V.V., Varadan, K.V.: Closed looped finite element modelling of active constrained layer damping in the time domain analysis. Smart Mater. Struct. 11, 89–97 (2002)CrossRefGoogle Scholar
  26. McTavish, D.J., Hughes, P.C.: Modelling of linear viscoelastic space structures. ASME J. Vib. Acoust. 115, 103–133 (1993)CrossRefGoogle Scholar
  27. Panda, S., Ray, M.C.: Active constrained layer damping of geometrically nonlinear vibrations of functionally graded plates using piezoelectric fibre-reinforced composites. Smart Mater. Struct. 17, 0250112 (2008)CrossRefGoogle Scholar
  28. Plunkett, R., Lee, C.T.: Length Optimization for constrained viscoelastic layer damping. J. Acoust. Soc. Am. 48, 150–161 (1970)CrossRefGoogle Scholar
  29. Putter, S., Manor, H.: Natural frequencies of radial rotating beams. J. Sound Vib. 56(2), 175–185 (1978)MATHCrossRefGoogle Scholar
  30. Rao, J.S., Carnegie, W.: Non-linear vibration of rotating cantilever beams. Aeronaut. J. R. Aeronaut. Soc. 74, 161–165 (1970)Google Scholar
  31. Rao, S.S., Gupta, R.S.: Finite element vibration analysis of rotating Timoshenko Beams. J. Sound Vib. 242(1), 103–124 (2001)MATHCrossRefGoogle Scholar
  32. Rao, S.S., Sunar, M.: Analysis of distributed thermopiezoelastic sensors and actuators in advanced intelligent structures. AIAA J. 31, 1280–1286 (1993)CrossRefGoogle Scholar
  33. Ray, M.C.: Optimal control of laminated plate with piezoelectric sensor and actuator layers. AIAA J. 36(12), 2204–2208 (1998)CrossRefGoogle Scholar
  34. Ray, M.C., Baz, A.: Optimization of energy dissipation of active constrained layer damping treatments of plate. J. Sound Vib. 208(3), 391–406 (1997)CrossRefGoogle Scholar
  35. Ray, M.C., Mallik, N.: Active control of laminated composite beams using a piezoelectric fibre reinforced composite layer. Smart Mater. Struct. 13, 146–152 (2004)CrossRefGoogle Scholar
  36. Ray, M.C., Pradhan, A.K.: The performance of vertically reinforced 1-piezoelectric composites in active damping of smart actuators. Smart Mater. Struct. 15, 631–641 (2006)CrossRefGoogle Scholar
  37. Ray, M.C., Shivakumar, J.: Active constrained layer damping of geometrically non-linear transient vibration of composite plates using piezoelectric fibre reinforced composite. Thin Walled Struct. 47, 178–189 (2009)CrossRefGoogle Scholar
  38. Ray, M.C., Bhattacharyya, R., Samanta, B.: Finite element model for active control of intelligent structures. AIAA J. 34(9), 1885–1893 (1996)MATHCrossRefGoogle Scholar
  39. Ray, M.C., Bhattacharyya, R., Samanta, B.: Exact solutions for dynamic analysis of composite structures with distributed piezoelectric sensors and actuators. Comput. Struct. 66(6), 737–743 (1998)MATHCrossRefGoogle Scholar
  40. Reberio, P., Petyt, M.: Nonlinear vibration of beams with internal resonance by hierarchical finite element method. J. Sound Vib. 224(4), 591–624 (1999)CrossRefGoogle Scholar
  41. Reddy, J.N.: On laminated composite plate with integrated sensors and actuators. Eng. Struct. 21, 568–593 (1999)CrossRefGoogle Scholar
  42. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells—Theory and Analysis, 2nd edn. CRC Press, Boca Raton (2003)Google Scholar
  43. Sarangi, S.K., Ray, M.C.: Smart damping of geometrically nonlinear vibration of laminated composite beams using vertically reinforced 1–3 piezoelectric composite. Smart Mater. Struct. 19, 75020 (2010)CrossRefGoogle Scholar
  44. Smith, W.A., Auld, B.A.: Modelling 1–3 composite piezoelectric: thickness-mode oscillations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(1), 40–47 (1991)CrossRefGoogle Scholar
  45. Vell, S.S., Batra, R.C.: Three dimensional analytical solutions for hybrid multi-layered piezoelectric plates. ASME J. Appl. Mech. 67, 558–567 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations