Thermo elastic analysis of functionally graded rotating disks with temperature-dependent material properties: uniform and variable thickness

  • Mehdi Bayat
  • B. B. Sahari
  • M. Saleem
  • A. M. S. Hamouda
  • J. N. Reddy
Article

Abstract

A thermo elastic analysis is presented for axisymmetric rotating disks made of functionally graded material (FGM) with variable thickness. Material properties are assumed to be temperature-dependent and graded in the radial direction according to a grading index power law distribution. The temperature field considered is assumed to be uniformly distributed over the disk surface and varied in the radial direction. Semi-analytical solutions for the displacement field are given for solid disk and annular disk under free-free and fixed-free boundary conditions. The effects of the thermal field, the material grading index and the geometry of the disk on the displacement and stress fields are investigated. Results of this study emphasize on the crucial role of the temperature-dependent properties in a high temperature environment. A comparison of these results with the reported ones in the literature that is temperature-dependent versus temperature-independent suggests that a functionally graded rotating disk with concave thickness profile can work more efficiently than the one with uniform thickness irrespective of whether the material properties are assumed to be temperature-dependent or temperature-independent.

Keywords

Functionally graded material Temperature-dependent properties Thermo elasticity Rotating disk 

References

  1. Bayat, M., Sahari, B.B., Hamouda, A.M.S., Saleem, M., Mahdi, E.: On the stress analysis of functionally graded gear wheels with variable thickness. Int. J. Comput. Eng. 9, 121–137 (2008). doi:10.1080/15502280701815416 MATHGoogle Scholar
  2. Bayat, M., Saleem, M., Sahari, B.B., Hamouda, A.M.S., Mahdi, E.: Thermo analysis of functionally graded rotating disks with variable thickness. Int. J. Press Vessel. Pip. 1–16 (2009). doi:10.1016/S1359-8368(99)00069-4
  3. Cheng, Z.Q., Batra, R.C.: Three-dimensional thermoelastic deformations of a functionally graded elliptic plate. Compos. Part B Eng. 31, 97–106 (2000). doi:10.1016/S1359-8368(99)00069-4 CrossRefGoogle Scholar
  4. Eraslan, A.N.: Elastic–plastic deformation of rotating variable thickness annular disks with free, pressurized and radially constrained boundary conditions. Int. J. Mech. Sci. 45, 643–667 (2003). doi:10.1016/S0020-7403(03)00112-7 MATHCrossRefGoogle Scholar
  5. Eraslan, A.N., Argeso, H.: Limit angular velocities of variable thickness rotating disks. Int. J. Solids Struct 39, 3109–3130 (2002). doi:10.1016/S0020-7683(02)00249-4 MATHCrossRefGoogle Scholar
  6. Eraslan, A.N., Orcan, Y.: Elastic–plastic deformation of a rotating disk of exponentially varying thickness. Mech. Mater. 34, 423–432 (2002). doi:10.1016/S0167-6636(02)00117-5 CrossRefGoogle Scholar
  7. Goupee, A.J., Vel, S.S.: Multi-objective optimization of functionally graded materials with temperature-dependent material properties. Mater. Des. 28, 1861–1879 (2007)Google Scholar
  8. Guven, U.: Elastic–plastic stresses in a rotating annular disk of variable thickness and variable density. Int. J. Mech. Sci. 34(2), 133–138 (1992). doi:10.1016/0020-7403(92)90078-U CrossRefGoogle Scholar
  9. Jianping, P., Harik, I.E.: Axisymmetric pressure and thermal gradients in conical missile tips. J. Aerosp. Eng. 4, 237–255 (1991). doi:10.1061/(ASCE)0893-1321(1991)4:3(237) CrossRefGoogle Scholar
  10. Kitipornchai, S., Yang, J., Liew, K.M.: Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections. Int. J. Solids Struct. 41, 305–315 (2004). doi:10.1016/j.ijsolstr.2003.12.019 CrossRefGoogle Scholar
  11. Kordkheili, S.A.H., Naghdabadi, R.: Thermoelastic analysis of a functionally graded rotating disk. Compos. Struct. 79(4), 508–516 (2007). doi:10.1016/j.compstruct.2006.02.010 CrossRefGoogle Scholar
  12. Na, K.S., Kim, J.H.: Three-dimensional thermomechanical buckling analysis for functionally graded composite plates. Compos. Struct. 73, 413–422 (2006). doi:10.1016/j.compstruct.2005.02.012 CrossRefGoogle Scholar
  13. Noda, N., Tsuji, T.: Steady thermal stresses in a plate of functionally gradient material with temperature-dependent properties. Trans. Jpn. Soc. Mech. Eng. Ser. A 57, 625–631 (1991)Google Scholar
  14. Obata, Y., Noda, N., Tsuji, T.: Steady thermal stresses in a functionally gradient material plate: influence of Mechanical Boundary Conditions. Trans. Jpn. Soc. Mech. Eng. 58, 1689–1695 (1992)Google Scholar
  15. Orcan, Y., Eraslan, A.N.: Elastic–plastic stresses in linearly hardening rotating solid disks of variable thickness. Mech. Res. Commun. 29, 269–281 (2002). doi:10.1016/S0093-6413(02)00261-6 MATHCrossRefGoogle Scholar
  16. Prakash, T., Ganapathi, M.: Supersonic flutter characteristics of functionally graded flat panels including thermal effects. Compos. Struct. 72, 10–18 (2006). doi:10.1016/j.compstruct.2004.10.007 CrossRefGoogle Scholar
  17. Praveen, G.N., Chin, C.D., Reddy, J.N.: Thermo elastic analysis of functionally graded ceramic-metal cylinder. J. Eng. Mech. 125, 1259–1267 (1999). doi:10.1061/(ASCE)0733-9399(1999)125:11(1259) CrossRefGoogle Scholar
  18. Qian, L.F., Batra, R.C., Chen, L.M.: Analysis of cylindrical bending thermo elastic deformations of functionally graded plates by a meshless local Petrov–Galerkin method. Comput. Mech. 33, 263–273 (2004). doi:10.1007/s00466-003-0527-z MATHCrossRefGoogle Scholar
  19. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Mech. Eng. 47, 663–684 (2000). doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8 MATHCrossRefGoogle Scholar
  20. Reddy, J.N., Chin, C.D.: Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stresses 21, 593–626 (1998). doi:10.1080/01495739808956165 CrossRefGoogle Scholar
  21. Reddy, T.Y., Srinath, H.: Elastic stresses in a rotating anisotropic annular disk of variable thickness and variable density. Int. J. Mech. Sci. 16, 85–89 (1974). doi:10.1016/0020-7403(74)90078-2 CrossRefGoogle Scholar
  22. Reddy, J.N., Wang, C.M., Kitipornchai, S.: Axisymmetric bending of functionally graded circular and annular plates. Eur. J. Mech. A/Solids 18, 185–199 (1999)MATHCrossRefGoogle Scholar
  23. Ruhi, M., Angoshtari, A., Naghdabadi, R.: Thermoelastic analysis of thick-walled finite-length cylinders of functionally graded materials. J. Therm. Stresses 28, 391–408 (2005). doi:10.1080/01495730590916623 CrossRefGoogle Scholar
  24. Sankar, B.V., Tzeng, J.T.: Thermal stresses in functionally graded beams. AIAA J. 40, 1228–1232 (2002). doi:10.2514/2.1775 CrossRefGoogle Scholar
  25. Shen, H.S.: Postbuckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments. Eng. Struct. 25, 487–497 (2003). doi:10.1016/S0141-0296(02)00191-8 CrossRefGoogle Scholar
  26. Suresh, S., Mortensen, A.: Fundamentals of Functionally Graded Material. Processing and Thermomechanical Behavior of Graded Metals and Metal-Ceramic Composites. IOM Communications LTD, London, UK (1998)Google Scholar
  27. Tanaka, K., Tanaka, Y., Watanabe, H., Poterasu, V.F., Sugano, Y.: An improved solution to thermoelastic material design in functionally gradient materials: scheme to reduce thermal stresses. Comput. Methods Appl. Mech. Eng. 109, 377–389 (1993). doi:10.1016/0045-7825(93)90088-F MATHCrossRefGoogle Scholar
  28. Tanigawa, Y.: Some basic thermoplastic problems for no homogeneous structural material. Appl. Mech. 48, 377–389 (1995)Google Scholar
  29. Teymur, M., Chitkara, N.R., Yohngjo, K., Aboudi, J., Pindera, M.J., Arnold, S.M.: Thermoelastic theory for the response of materials functionally graded in two directions. Int. J. Solids Struct. 33(7), 931–966 (1996). doi:10.1016/0020-7683(95)00084-4 CrossRefGoogle Scholar
  30. Tutuncu, N.: Effect of anisotropy on stresses in rotating discs. Int. J. Mech. Sci. 37(8), 873–881 (1995). doi:10.1016/0020-7403(94)00097-4 MATHCrossRefGoogle Scholar
  31. Vel, S.S., Batra, R.C.: Exact solution for thermoelastic deformations of functionally graded thick rectangular plates. AIAA J. 40, 1421–1433 (2002). doi:10.2514/2.1805 CrossRefGoogle Scholar
  32. Yang, J., Shen, H.S.: Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments. J. Sound Vib. 225, 579–602 (2002). doi:10.1006/jsvi.2001.4161 CrossRefGoogle Scholar
  33. Yang, J., Liew, K.M., Wu, Y.F., Kitipornchai, S.: Thermo-mechanical post buckling of FGM cylindrical panels with temperature-dependent properties. Int. J. Solids Struct. 43, 307–324 (2006). doi:10.1016/j.ijsolstr.2005.04.001 MATHCrossRefGoogle Scholar
  34. Zimmerman, R.W., Lutz, M.P.: Thermal stresses and thermal expansion in a uniformly heated functionally graded cylinder. J. Therm. Stresses 22, 177–188 (1999). doi:10.1080/014957399280959 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2009

Authors and Affiliations

  • Mehdi Bayat
    • 1
    • 2
  • B. B. Sahari
    • 1
    • 2
  • M. Saleem
    • 3
  • A. M. S. Hamouda
    • 4
  • J. N. Reddy
    • 5
  1. 1.Mechanical and Manufacturing Engineering DepartmentUniversity Putra MalaysiaSerdangMalaysia
  2. 2.Institute of Advanced Technology (ITMA)Universiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Applied MathematicsZ. H. College of Engineering and Technology, AMUAligarhIndia
  4. 4.Mechanical and industrial Engineering DepartmentQatar UniversityDohaQatar
  5. 5.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations