Multiscale design of a rectangular sandwich plate with viscoelastic core and supported at extents by viscoelastic materials

  • Yao Koutsawa
  • Michael R. Haberman
  • El Mostafa Daya
  • Mohammed Cherkaoui
Article

DOI: 10.1007/s10999-008-9084-0

Cite this article as:
Koutsawa, Y., Haberman, M.R., Daya, E.M. et al. Int J Mech Mater Des (2009) 5: 29. doi:10.1007/s10999-008-9084-0

Abstract

This work presents a multiscale model of viscoelastic constrained layer damping treatments for vibrating plates/beams. The approach integrates a finite element (FE) model of macroscale vibrations and a micromechanical model to include effects of microscale structure and properties. The FE model captures the shear deformation of the viscoelastic core, rotary inertial effects of all layers, and viscoelastic boundaries of the plate. Comparison with analytical and FE results validates the proposed FE model. A self-consistent (SC) model makes the micro to macro scale transition to approximate the effective behavior a heterogeneous core. Modal damping resulting from the presence of voids and negative stiffness regions in the core material is modeled. Results show that negative stiffness regions in the viscoelastic core material, even at low volume fractions, yield superior macroscopic damping behavior. The coupled SC and FE models provide a powerful multiscale predictive design tool for sandwich beams and plates.

Keywords

Sandwich plate Constrained layer damping Loss factor Finite elements Micromechanics Negative stiffness Material design 

Copyright information

© Springer Science+Business Media, B.V. 2008

Authors and Affiliations

  • Yao Koutsawa
    • 1
  • Michael R. Haberman
    • 2
  • El Mostafa Daya
    • 1
  • Mohammed Cherkaoui
    • 3
  1. 1.Laboratoire de Physique et Mécanique des Matériaux, UMR CNRS 7554, I.S.G.M.P.Université Paul Verlaine-MetzIle du SaulcyFrance
  2. 2.Applied Research LaboratoriesUniversity of Texas at AustinAustinUSA
  3. 3.Unité Mixte Internationale UMI GT CNRS 2958, G.W.Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations