Meshless modelling of crack growth with discrete rotating crack segments



A novel meshless method of propagation of cohesive cracks is presented. In the method, the crack is modeled by overlapping crack segments that are located only at the nodes. They are inserted when a certain failure criterion is met. The crack segments are perpendicular to the direction of the maximum principal stress. They can rotate during the coarse of the simulation when directional changes in the maximum principal stress occur. It will be shown that fixed crack models lead to over-smearing the crack and too stiff responses of the system. The advantage of this method is that it does not require algorithms to track the crack path.


Rotating crack Fracture Meshless 


  1. Barenblatt, G.: The mathematical theory of equilibrium of cracks in brittle fracture. Adv. Appl. Fract. 7, 55–129 (1962)MathSciNetGoogle Scholar
  2. Bazant, Z.P., Belytschko, T.: Wave propagation in a strain softening bar: exact solution. J. Eng. Mech. ASCE 11, 381–389 (1985)CrossRefGoogle Scholar
  3. Bazant, Z.P., Oh, B.H.: Crack band theory for fracture in concrete. Mater. Struct. 16, 155–177 (1983)Google Scholar
  4. Belytschko, T., Lu, Y.Y.: Element-free galerkin methods for static and dynamic fracture. Int. J. Solids Struct. 32, 2547–2570 (1995)MATHCrossRefGoogle Scholar
  5. Belytschko, T., Lu, Y.Y., Gu, L.: Crack propagation by element-free galkerin methods. Eng. Fract. Mech. 51, 295–315 (1994a)CrossRefGoogle Scholar
  6. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994b)MATHCrossRefMathSciNetGoogle Scholar
  7. Belytschko, T., Lu, Y.Y., Gu, L.: Crack propagation by element-free galerkin methods. Eng. Fract. Mech. 51(2), 295–315 (1995)CrossRefGoogle Scholar
  8. Bordas, S., Moran, B.: Enriched finite elements and level sets for damage tolerance assessment of complex structures. Eng. Fract. Mech. 73, 1176–1201 (2006)CrossRefGoogle Scholar
  9. Bordas, S., Conley, J.G., Moran, B., Gray, J., Nichols, E.: A simulation-based design paradigm for complex cast components. Eng. Comput. 23(1), 25–37 (2007)CrossRefGoogle Scholar
  10. Bordas, S., Nguyen, V.P., Dunant, C., Nguyen-Dang, H., Guidoum, A.: An extended finite element library (2007)Google Scholar
  11. Bordas, S., Rabczuk, T., Zi, G.: Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Eng. Fract. Mech. 75(5), 943–960 (2008)CrossRefGoogle Scholar
  12. deBorst, R., Remmers, J., Needleman, A.: Discrete versus smeared crack models for concrete fracture: bridging the gap. Int. J. Numer. Methods Eng. 28, 583–607 (2004)Google Scholar
  13. Duddu, R., Bordas, S., Moran, B., Chopp, D.: A combined extended finite element and level set method for biofilm growth. Int. J. Numer. Methods Eng. (2007) in press, doi:10.1002/nme.2200
  14. Dunant, C., Nguyen, P., Belgasmia, M., Bordas, S., Guidoum, A., Nguyen-Dang, H.: Architecture trade-offs of including a mesher in an object-oriented extended finite element code. Eur. J. Comput. Mech. 16(2), 237–258 (2007)Google Scholar
  15. Gong, S.X., Meguid, S.A.: On the effect of the release of residual stresses due to near-tip microcracking. Int. J. Fract. 52(4), 257–274 (1991)Google Scholar
  16. Hammond, D.W., Meguid, S.A.: Crack propagation in the presence of shot-peening residual-stresses. Eng. Fract. Mech. 37(2), 373–387 (1990)CrossRefGoogle Scholar
  17. Hao, S., Liu, W.K., Klein, P.A., Rosakis, A.J.: Modeling and simulation of intersonic crack growth. Int. J. Solids Struct. 41(7), 1773–1799 (2004)MATHCrossRefGoogle Scholar
  18. Hillerborg, A., Modeer, M., Peterson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 773–782 (1976)CrossRefGoogle Scholar
  19. Jirasek, M., Zimmermann, T.: Analysis of rotating crack model. J. Eng. Mech. 124, 842–851 (1998)CrossRefGoogle Scholar
  20. Li, S., Simonson Bo, C.: Meshfree simulation of ductile crack propagation. Int. J. Comput. Methods Eng. Sci. Mech. 6, 1–19 (2003)MATHCrossRefGoogle Scholar
  21. Li, S., Hao, W., Liu, W.K.: Mesh-free simulations of shear banding in large deformation. Int. J. Solids Struct. 37, 7185–7206 (2000)MATHCrossRefGoogle Scholar
  22. Li, S., Liu, W.K., Rosakis, A., Belytschko, T., Hao, W.: Mesh free galerkin simulations of dynamic shear band propagation and failure mode transition. Int. J. Solids Struct. 39, 1213–1240 (2002)MATHCrossRefGoogle Scholar
  23. Lofti, H.R., Shing, P.B.: An appraisal of smeared crack models for masonry shear wall analysis. Comp. Struct. 41, 413–425 (1991)CrossRefGoogle Scholar
  24. Malvar, L.J., Fourney, M.E.: A three dimensional application of the smeared crack approach. Eng. Fract. Mech. 35(1–3), 251–260 (1990)CrossRefGoogle Scholar
  25. Melenk, J.M., Babuska, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139, 289–314 (1996)MATHCrossRefMathSciNetGoogle Scholar
  26. Meguid, S.A., Wang, X.D., Jiang, L.Y.: On the dynamic propagation of a finite crack in functionally graded materials. Eng. Fract. Mech. 69(14–16), 1753–1768 (2002)CrossRefGoogle Scholar
  27. Organ, D., Fleming, M., Terry, T., Belytschko, T.: Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput. Mech. 18, 225–235 (1996)MATHCrossRefGoogle Scholar
  28. Ortiz, M., Leroy, Y., Needleman, A.: Finite element method for localized failure analysis. Comput. Methods Appl. Mech. Eng. 61, 189–213 (1987)MATHCrossRefGoogle Scholar
  29. Papanikos, P., Meguid, S.A.: Theoretical and experimental studies of fretting-initiated fatigue failure of aeroengine compressor disks. Fatigue Fract. Eng. Mater. Struct. 17(5), 539–550 (1994)CrossRefGoogle Scholar
  30. Rabczuk, T., Belytschko, T.: Cracking particles: A simplified meshfree method for arbitrary evolving cracks. Int. J. Numer. Methods Eng. 61(13), 2316–2343 (2004)MATHCrossRefGoogle Scholar
  31. Rabczuk, T., Belytschko, T.: Adaptivity for structured meshfree particle methods in 2d and 3d. Int. J. Numer. Methods Eng. 63(11), 1559–1582 (2005)MATHCrossRefMathSciNetGoogle Scholar
  32. Rabczuk, T., Zi, G.: A meshfree method based on the local partition of unity for cohesive cracks. Comput. Mech. 39(6), 743–760 (2007)CrossRefMATHGoogle Scholar
  33. Rabczuk, T., Bordas, S., Zi, G.: A three dimensional meshfree method for static and dynamic multiple crack nucleation/propagation with crack path continuity. Comput. Mech. 40(3), 473–495 (2007)CrossRefMATHGoogle Scholar
  34. Wang, X.D., Meguid, S.A.: On the dynamic crack-propagation in an interface with spatially varying elastic properties. Int. J. Fract. 69(1), 87–99 (1994)CrossRefGoogle Scholar
  35. Wang, X.D., Meguid, S.A.: Modelling and analysis of the dynamic behaviour of piezoelectric materials containing interacting cracks. Mech. Mater. 32(12), 723–737 (2000)CrossRefGoogle Scholar
  36. Wang, X.D., Meguid, S.A., Papanikos, P.: Analysis of curved cracks emanating from adjacent holes. Eng. Fract. Mech. 33(3), 337–355 (1999)CrossRefGoogle Scholar
  37. Zimmermann, T.: Failure and fracturing analysis of concrete structures. Nucl. Eng. Des. 92(3), 389–410 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Engineering MechanicsBeijing University of TechnologyBeijingChina

Personalised recommendations