On q-analogues of quadratic Euler sums

  • 10 Accesses


In this paper we study q-analogues of Euler sums and present a new family of identities by using the method of Jackson q-integral representations of series. We then apply it to obtain a family of identities relating quadratic Euler sums to linear sums and q-polylogarithms. Furthermore, we use certain stuffle products to evaluate several q-series with q-harmonic numbers. Some interesting new results and illustrative examples are considered. Finally, if q tends to 1, we obtain some explicit relations for the classical Euler sums.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA


  1. 1.

    D.H. Bailey, J.M. Borwein, R. Girgensohn, Experimental evaluation of Euler sums. Exp. Math. 3(1), 17–30 (1994)

  2. 2.

    J. Blumlein, S. Kurth, Harmonic sums and Mellin transforms up to two loop order. Phys. Rev. D. 60, 014018 (1999)

  3. 3.

    D. Borwein, J.M. Borwein, R. Girgensohn, Explicit evaluation of Euler sums. Proc. Edinb. Math. Soc. 38, 277–294 (1995)

  4. 4.

    J.M. Borwein, R. Girgensohn, Evaluation of triple Euler sums. Electron. J. Combin. 3, 2–7 (1996)

  5. 5.

    D.M. Bradley, Multiple \(q\)-zeta values. J. Algebra 283, 752–798 (2005)

  6. 6.

    M.W. Coffey, On one-dimensional digamma and polygamma series related to the evaluation of Feynman diagrams. J. Comput. Appl. Math. 183, 84–100 (2005)

  7. 7.

    M.W. Coffey, On a three-dimensional symmetric Ising tetrahedron and contributions to the theory of the dilogarithm and Clausen functions. J. Math. Phys. 49(4), 542–555 (2008)

  8. 8.

    K. Dilcher, K. Hessami Pilehrood, T. Hessami Pilehrood, On \(q\)-analogues of double Euler sums. J. Math. Anal. Appl. 2(410), 979–988 (2014)

  9. 9.

    L. Euler, Meditationes circa singulare serierum genus. Novi Comm. Acad. Sci. Petropol. 20, 140–186 (1775). (reprinted. In: Opera Omnia, Ser. 1, vol. 15, Teubner, Berlin, 1927, 217–267)

  10. 10.

    P. Flajolet, B. Salvy, Euler sums and contour integral representations. Exp. Math. 7(1), 15–35 (1998)

  11. 11.

    K. Hessami Pilehrood, T. Hessami Pilehrood, On \(q\)-analogues of two-one formulas for multiple harmonic sums and multiple zeta star values. Monatsh. Math. 176, 275–291 (2015)

  12. 12.

    K. Hessami Pilehrood, T. Hessami Pilehrood, R. Tauraso, New properties of multiple harmonic sums modulo \(p\) and \(p\)-analogues of Leshchiner’s series. Trans. Am. Math. Soc. 366(6), 3131–3159 (2014)

  13. 13.

    M.E. Hoffman, The algebra of multiple harmonic series. J. Algebra 194(2), 477–495 (1997)

  14. 14.

    M.E. Hoffman, Multiple zeta values: from Euler to the present, in MAA Sectional Meeting (Annapolis, November 10, 2007).

  15. 15.

    H.F. Jackson, \(q\)-difference equations. Am. J. Math. 32, 305–314 (1910)

  16. 16.

    M. Kaneko, N. Kurokawa, M. Wakayama, A variation of Euler’s approach to values of the Riemann zeta function. Kyushu J. Math. 57, 175–192 (2003)

  17. 17.

    Z. Li, On harmonic sums and alternating Euler sums. arXiv:1012.5192

  18. 18.

    A.S. Lorente, Some \(q\)-representations of the \(q\)-analogue of the Hurwitz zeta function. Lect. Mat. 36(1), 13–20 (2015)

  19. 19.

    S. Muneta, Algebraic setup of non-strict multiple zeta values. Acta Arith. 136(1), 7–18 (2009)

  20. 20.

    A. Salem, Two classes of bounds for the \(q\)-gamma and the \(q\)-digamma functions in terms of the \(q\)-zeta functions. Banach J. Math. Anal. 8(1), 109–117 (2014)

  21. 21.

    X. Si, Some results on \(q\)-harmonic number sums. Adv. Differ. Equ. (2018).

  22. 22.

    Y. Tomita, Hermite’s formulas for \(q\)-analogues of Hurwitz zeta functions. Funct. Approx. Comment. Math. 45(2), 289–301 (2011)

  23. 23.

    M. Wakayama, Y. Yamasaki, Integral representations of \(q\)-analogues of the Hurwitz zeta function. Monatsh. Math. 149(2), 141–154 (2006)

  24. 24.

    W. Wang, Y. Lyu, Euler sums and Stirling sums. J. Number Theory 185, 160–193 (2018)

  25. 25.

    C. Xu, Multiple zeta values and Euler sums. J. Number Theory 177, 443–478 (2017)

  26. 26.

    C. Xu, Some evaluation of quadratic Euler sums. arXiv:1701.03724 [math.NT]

  27. 27.

    C. Xu, Some evaluation of parametric Euler sums. J. Math. Anal. Appl. 451, 954–975 (2017)

  28. 28.

    C. Xu, Z. Li, Tornheim type series and nonlinear Euler sums. J. Number Theory 174, 40–67 (2017)

  29. 29.

    C. Xu, Y. Yan, Z. Shi, Euler sums and integrals of polylogarithm functions. J. Number Theory 165, 84–108 (2016)

  30. 30.

    C. Xu, M. Zhang, W. Zhu, Some evaluation of \(q\)-analogues of Euler sums. Monatsh. Math. 182(4), 957–975 (2017)

  31. 31.

    D. Zagier, Values of zeta functions and their applications, in First European Congress of Mathematics, Volume II, 120 (Birkhäuser, Boston, 1994), pp. 497–512

  32. 32.

    D. Zagier, Evaluation of the multiple zeta values \(\zeta (2,\ldots,2,3,2,\ldots,2)\). Ann. Math. 2(2), 977–1000 (2012)

  33. 33.

    J. Zhao, \(q\)-multiple zeta functions and \(q\)-multiple polylogarithms. Ramanujan J. 14(2), 189–221 (2007)

Download references


Funding was provided by National Natural Science Foundation of China (Grant No. 11471245).

Author information

Correspondence to Ce Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is supported by the National Natural Science Foundation of China (Grant No. 11471245) and the Natural Science Foundation of Shanghai (Grant No. 14ZR1443500). We thank the anonymous referee for suggestions which led to improvements in the exposition.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xu, C. On q-analogues of quadratic Euler sums. Period Math Hung (2020) doi:10.1007/s10998-020-00312-7

Download citation


  • q-harmonic number
  • q-Euler sum
  • q-polylogarithm function

Mathematics Subject Classification

  • 05A30
  • 65B10
  • 33D05
  • 11M99
  • 11M06
  • 11M32