Periodica Mathematica Hungarica

, Volume 78, Issue 1, pp 128–134 | Cite as

On the rank of the 2-class group of an extension of degree 8 over \(\mathbb {Q}\)

  • A. Azizi
  • I. JerrariEmail author
  • M. Talbi


Let K be an imaginary cyclic quartic number field whose 2-class group is nontrivial, it is known that there exists at least one unramified quadratic extension F of K. In this paper, we compute the rank of the 2-class group of the field F.


2-class groups Capitulation Cyclic quartic number field 

Mathematics Subject Classification

11R16 11R11 11R29 11R37 


  1. 1.
    A. Azizi, I. Jerrari, M. Talbi, Unramified extensions of some cyclic quartic fields. Bol. Soc. Parana. Mat. (3s.) 36(1), 215–221 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A. Azizi, I. Jerrari, A. Zekhnini, M. Talbi, On the second 2-class group \({\rm Gal}(K_2^{(2)}/K)\) of some imaginary quartic cyclic number field \(K\). J. Number Theory 177, 562–588 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Azizi, M. Talbi, Capitulation des \(2\)-classes d’idéaux de certains corps biquadratiques cycliques. Acta Arith. 127, 231–248 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. Azizi, M. Talbi, Capitulation dans certaines extensions non ramifiées de corps quartiques cycliques. Arch. Math. (BRNO) 44, 271–284 (2008)MathSciNetzbMATHGoogle Scholar
  5. 5.
    A. Azizi, A. Zekhnini, M. Taous, Coclass of \({\rm Gal}({\rm k}^{(2)}_2/{\rm k})\) for some fields \({\rm k}=\mathbb{Q}\left(\sqrt{ p_1p_2q}, \sqrt{ -1}\right)\) with \(2\)-class groups of type \((2, 2, 2)\). J. Algebra Appl 15(2), 1650027 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Azizi, A. Zekhnini, M. Taous, Structure of \({\rm G}al({\rm k}^{(2)}_2/{\rm k})\) for some fields \({\rm k}=\mathbb{Q}(\sqrt{2p_1p_2}, i)\) with \(\mathbf{C}l_2({{\rm k}})\simeq (2, 2, 2)\). Abh. Math. Sem. Univ. Hambg. 84(2), 203–231 (2014)CrossRefzbMATHGoogle Scholar
  7. 7.
    A. Azizi, A. Zekhnini, M. Taous, Daniel C. Mayer, Principalization of \(2\)-class groups of type \((2, 2, 2)\) of biquadratic fields \({\mathbb{Q}}(\sqrt{ p_1p_2q}, i)\). Int. J. Number Theory 11(4), 1177–1215 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    E. Brown, C.J. Parry, The \(2\)-class group of certain biquadratic number fields I. J. Reine Angew. Math. 295, 61–71 (1977)MathSciNetzbMATHGoogle Scholar
  9. 9.
    P. Kaplan, Sur le \(2\)-groupe des classes d’idéaux des corps quadratiques. J. Reine Angew. Math. 283(284), 313–363 (1976)MathSciNetzbMATHGoogle Scholar
  10. 10.
    R. Kučera, On the parity of the class number of biquadratic field. J. Number Theory 52, 43–52 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    F. Lemmermeyer, Ideal class groups of cyclotomic number fields I. Acta Arith. 72, 4 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    F. Lemmermeyer, On \(2\)-class field towers of some imaginary quadratic number fields. Abh. Math. Sem. Hambg. 67, 205–214 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of SciencesMohammed First UniversityOujdaMorocco
  2. 2.Regional Center of Education and TrainingOujdaMorocco

Personalised recommendations