Periodica Mathematica Hungarica

, Volume 78, Issue 1, pp 38–46 | Cite as

Tauberian conditions on some slowly decreasing sequences

  • Yılmaz ErdemEmail author


We present some Tauberian conditions to recover Cesàro summability of a sequence out of the product methods of Abel and Cesàro summability of the sequence. Moreover, we generalize some classical Tauberian theorems, such as the Hardy–Littlewood theorem, the generalized Littlewood theorem for Abel summability method.


Abel summability Cesàro summability Product method of summability Slowly decreasing Tauberian theorems 

Mathematics Subject Classification

40E05 40G0 40G10 


  1. 1.
    E. Kogbetliantz, Sur le séries absolument sommables par la méthode des moyennes arihtmétiques. Bull. Sci. Math. 49(2), 234–251 (1925)zbMATHGoogle Scholar
  2. 2.
    E. Kogbetliantz, Sommation des séries et intégrals divergents par les moyennes arithmétiques et typiques. Meml. Sci. Math. 51, 1–84 (1931)zbMATHGoogle Scholar
  3. 3.
    Č.V. Stanojević, Analysis of Divergence: Applications to the Tauberian Theory, Graduate Research Seminar (University of Missouri-Rolla, Winter, 1999)Google Scholar
  4. 4.
    R. Schmidt, Über divergente Folgen und lineare Mittelbildungen. Math. Z. 22, 89–152 (1925)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Boos, Classical and Modern Methods in Summability (Oxford University Press, New York, 2000)zbMATHGoogle Scholar
  6. 6.
    D. Borwein, Theorems on some methods of summability. Q. J. Math. Oxf. II. Ser. 9(1), 310–316 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. Amir (Jakimovski), On a converse of Abel’s theorem. Proc. Am. Math. Soc. 3, 244–256 (1952)Google Scholar
  8. 8.
    R.D. Lord, On some relations between the Abel, Borel, and Cesàro methods of summation. Lond. Math. Soc. Proc. 38(2), 241–256 (1935)CrossRefzbMATHGoogle Scholar
  9. 9.
    A. Tauber, Ein satz der Theorie der unendlichen Reihen. Monatsh. f. Math. 8, 273–277 (1897)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    G.H. Hardy, Theorems relating to the summability and convergence of slowly oscillating series. Lond. Math. Soc. Proc. 8(2), 301–320 (1910)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    J.E. Littlewood, The converse of Abel’s theorem on power series. Lond. Math. Soc. Proc. 9(2), 434–448 (1911)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    G.H. Hardy, J.E. Littlewood, Tauberian theorems concerning power and Dirichlet’s series whose coefficients are positive. Lond. Math. Soc. Proc. 13(2), 174–191 (1913)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    O. Szàsz, Generalization of two theorems of Hardy and Littlewood on power series. Duke Math. J. 1, 105–111 (1935)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    O. Meronen, I. Tammeraid, General control modulo and Tauberian remainder theorems for (C,1) summability. Math. Model. Anal. 18(1), 97–102 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    İ. Çanak, An extended Tauberian theorem for the \((C,1)\) summability method. Appl. Math. Lett. 21(1), 74–80 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    R. Estrada, J. Vindas, Distributional versions of Littlewood’s Tauberian theorem. Czechoslovak Math. J. 63(2), 403–420 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    R. Estrada, J. Vindas, On Tauber’s second Tauberian theorem. Tohoku Math. J. 64(4), 539–560 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    P.N. Natarajan, A Tauberian theorem for weighted means. Bull. Pure Appl. Math. 6(1), 45–48 (2012)MathSciNetGoogle Scholar
  19. 19.
    İ. Çanak, Ü. Totur, Some Tauberian conditions for Cesàro summability method. Math. Slovaca 62(2), 271–280 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ü. Totur, M. Dik, Extended Tauberian conditions for \((C,1)\) summability method. Appl. Math. Lett. 24(1), 66–70 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    T. Pati, On Tauberian theorems, in Sequences, Summability and Fourier Analysis, ed. by D. Rath, S. Nanda (Narosa Publishing House, Kolkata, 2005), pp. 84–96Google Scholar
  22. 22.
    C.T. Rajagopal, On Tauberian theorems for Abel-Cesàro summability. Proc. Glasgow Math. Assoc. 3, 176–181 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    İ. Çanak, Y. Erdem, Ü. Totur, Some Tauberian theorems for \((A)(C, \alpha )\) summability method. Math. Comput. Model. 52, 738–743 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Y. Erdem, İ. Çanak, A Tauberian theorem for \((A)(C, \alpha )\) summability. Comput. Math. Appl. 60(11), 2920–2925 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    İ. Çanak, Y. Erdem, On Tauberian theorems for \((A)(C, \alpha )\) summability method. App. Math. Comput. 218, 2829–2836 (2011)CrossRefzbMATHGoogle Scholar
  26. 26.
    Y. Erdem, Ü. Totur, Some Tauberian theorems for the product method of Borel and Cesàro summability. Comput. Math. Appl. 64(9), 2871–2876 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    D.H. Armitage, I.J. Maddox, Discrete Abel means. Analysis 10(2–3), 177–186 (1990)MathSciNetzbMATHGoogle Scholar
  28. 28.
    M. Dik, Tauberian theorems for sequences with moderately oscillatory control moduli. Math. Morav. 5, 57–94 (2001)CrossRefzbMATHGoogle Scholar
  29. 29.
    İ. Çanak, M. Dik, A Tauberian theorem for \((C,1)\) summability method. Appl. Math. Sci. (Ruse) 1(45–48), 2247–2252 (2007)MathSciNetzbMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Economics and FinanceAydın Adnan Menderes UniversityAydınTurkey

Personalised recommendations