Periodica Mathematica Hungarica

, Volume 65, Issue 1, pp 97–105 | Cite as

A note on maximal subgroups of free idempotent generated semigroups over bands

Article

Abstract

We prove that all maximal subgroups of the free idempotent generated semigroup over a band B are free for all B belonging to a band variety V if and only if V consists either of left seminormal bands, or of right seminormal bands.

Key words and phrases

free idempotent generated semigroup band maximal subgroup 

Mathematics subject classification numbers

20M05 20M10 20F05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Brittenham, S. W. Margolis and J. Meakin, Subgroups of free idempotent generated semigroups need not be free, J. Algebra, 321 (2009), 3026–3042.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    M. Brittenham, S. W. Margolis and J. Meakin, Subgroups of free idempotent generated semigroups: full linear monoids, manuscript, 17 pp., arXiv: 1009.5683.Google Scholar
  3. [3]
    D. Easdown, Biordered sets of bands, Semigroup Forum, 29 (1984), 241–246.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    D. Easdown, Biordered sets are biordered subsets of idempotents of semigroups, J. Austral. Math. Soc. Ser. A, 37 (1984), 258–268.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    D. Easdown, Biordered sets come from semigroups, J. Algebra, 96 (1985), 581–591.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    R. Gray and N. Ruškuc, On maximal subgroups of free idempotent generated semigroups, Israel J. Math., 189 (2012), 147–176.MathSciNetCrossRefGoogle Scholar
  7. [7]
    P. M. Higgins, Techniques of Semigroup Theory, Oxford University Press, Oxford, 1992.MATHGoogle Scholar
  8. [8]
    B. Mcelwee, Subgroups of the free semigroup on a biordered set in which principal ideals are singletons, Comm. Algebra, 30 (2002), 5513–5519.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    K. S. S. Nambooripad, Structure of regular semigroups I, Mem. Amer. Math. Soc. Vol. 22, No. 224, Amer. Math. Soc., Rhode Island, 1979.Google Scholar
  10. [10]
    K. S. S. Nambooripad and F. Pastijn, Subgroups of free idempotent generated regular semigroups, Semigroup Forum, 21 (1980), 1–7.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    N. Ruškuc, Presentations for subgroups of monoids, J. Algebra, 220 (1999), 365–380.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    F. Pastijn, Idempotent generated completely 0-simple semigroups, Semigroup Fo-rum, 15 (1977), 41–50.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    F. Pastijn, The biorder on the partial groupoid of idempotents of a semigroup, J. Algebra, 65 (1980), 147–187.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    M. Petrich, The translational hull in semigroups and rings, Semigroup Forum, 1 (1970), 283–360.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    M. Petrich, Lectures in Semigroups, Wiley, New York, 1977.Google Scholar
  16. [16]
    M. Petrich and P. V. Silva, Structure of relatively free bands, Comm. Algebra, 30 (2002), 4165–4187.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Department of Mathematics and InformaticsUniversity of Novi SadNovi SadSerbia

Personalised recommendations