Periodica Mathematica Hungarica

, Volume 62, Issue 2, pp 127–246 | Cite as

Randomness of the square root of 2 and the giant leap, part 2

Article

Abstract

We prove that the “quadratic irrational rotation” exhibits a central limit theorem. More precisely, let α be an arbitrary real root of a quadratic equation with integer coefficients; say, \(\alpha = \sqrt 2\) . Given any rational number 0 < x < 1 (say, x = 1/2) and any positive integer n, we count the number of elements of the sequence α, 2α, 3α, ..., modulo 1 that fall into the subinterval [0, x]. We prove that this counting number satisfies a central limit theorem in the following sense. First, we subtract the “expected number” nx from the counting number, and study the typical fluctuation of this difference as n runs in a long interval 1 ≤ nN. Depending on α and x, we may need an extra additive correction of constant times logarithm of N; furthermore, what we always need is a multiplicative correction: division by (another) constant times square root of logarithm of N. If N is large, the distribution of this renormalized counting number, as n runs in 1 ≤ nN, is very close to the standard normal distribution (bell shaped curve), and the corresponding error term tends to zero as N tends to infinity. This is the main result of the paper (see Theorem 1.1).

Key words and phrases

lattice point counting in specified regions discrepancy irregularities of distribution distribution modulo 1 central limit theorem continued fractions diophantine inequalities inhomogeneous linear forms Dedekind sums 

Mathematics subject classification numbers

11P21 11K38 11K06 60F05. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Be6]
    J. Beck, Inevitable Randomness in Discrete Mathematics, University Lecture Series, Vol. 49, Amer. Math. Soc., 2009.Google Scholar
  2. [El]
    P. D. T. A. Elliott, Probabilistic number theory, Vol. 1 and 2, Springer, 1979–80.Google Scholar
  3. [Ha-Li1]
    G. H. Hardy and J. Littlewood, The lattice-points of a right-angled triangle. I, Proc. London Math. Soc., 3 (1920), 15–36.Google Scholar
  4. [Ha-Li2]
    G. H. Hardy and J. Littlewood, The lattice-points of a right-angled triangle. II, Abh. Math. Sem. Hamburg, 1 (1922), 212–249.CrossRefGoogle Scholar
  5. [Ha-Wr]
    G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th edition, Clarendon Press, Oxford, 1979.MATHGoogle Scholar
  6. [Ka]
    M. Kac, Probability methods in some problems of analysis and number theory, Bull. Amer. Math. Soc., 55 (1949), 641–665.MathSciNetMATHCrossRefGoogle Scholar
  7. [Ke]
    Kesten, H., Uniform distribution mod 1, Ann. Math., 71 (1960), 445–471; Part II, Acta Arithm., 7 (1961), 355–360.MathSciNetCrossRefGoogle Scholar
  8. [Kn2]
    D. E. Knuth, The art of computer programming, Vol. 3, Addison-Wesley, 1998.Google Scholar
  9. [La]
    S. Lang, Introduction to Diophantine Approximations, Addison-Wesley, 1966.Google Scholar
  10. [Os]
    A. Ostrowski, Bemerkungen zur Theorie der Diophantischen Approximationen. I, Abh. Hamburg Sem., 1 (1922), 77–99.CrossRefGoogle Scholar
  11. [Shi]
    T. Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo, 23 (1976), 393–417.MathSciNetMATHGoogle Scholar
  12. [So2]
    Vera T. Sós, On the discrepancy of the sequence }}, Colloq. Math. Soc. János Bolyai13, 1974, 359–367.Google Scholar
  13. [Wo]
    S. Wolfram, A new kind of science, Wolfram Media, 2002.Google Scholar
  14. [Za2]
    D. B. Zagier, On the values at negative integers of the zeta-function of a real quadratic field, Einseignement Math. (2), 22 (1976), 55–95.MathSciNetGoogle Scholar
  15. [Za3]
    D. B. Zagier, Valeurs des functions zeta des corps quadratiques reels aux entiers negatifs, Journées Arithmétiques de Caen, Asterisque, 41–42 (1977), 135–151.MathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2011

Authors and Affiliations

  1. 1.Mathematics Department, Busch Campus, Hill CenterRutgers UniversityNew BrunswickUSA

Personalised recommendations