Advertisement

Association Between Maternal 2nd Trimester Plasma Folate Levels and Infant Bronchiolitis

  • Shanda Vereen
  • Tebeb Gebretsadik
  • Nia Johnson
  • Terryl J. Hartman
  • Sreenivas P. Veeranki
  • Chandrika Piyathilake
  • Edward F. Mitchel
  • Mehmet Kocak
  • William O. Cooper
  • William D. Dupont
  • Frances Tylavsky
  • Kecia N. Carroll
Article
  • 77 Downloads

Abstract

Objectives Viral bronchiolitis is the most common cause of infant hospitalization. Folic acid supplementation is important during the periconceptional period to prevent neural tube defects. An area of investigation is whether higher prenatal folate is a risk factor for childhood respiratory illnesses. We investigated the association between maternal 2nd trimester plasma folate levels and infant bronchiolitis. Methods We conducted a retrospective cohort analysis in a subset of mother-infant dyads (n = 676) enrolled in the Conditions Affecting Neurocognitive Development and Learning in Early Childhood study and Tennessee Medicaid. Maternal folate status was determined using 2nd trimester (16–28 weeks) plasma samples. Bronchiolitis diagnosis in the first year of life was ascertained using International Classification of Diagnosis-9 codes from Medicaid administrative data. We used multivariable logistic regression to assess the adjusted association of prenatal folate levels and infant bronchiolitis outcome. Results Half of the women in this lower-income and predominately African-American (84%) study population had high levels of folate (median 2nd trimester level 19.2 ng/mL) and 21% of infants had at least one bronchiolitis healthcare visit. A relationship initially positive then reversing between maternal plasma folate and infant bronchiolitis was observed that did not reach statistical significance (poverall = .112, pnonlinear effect = .088). Additional adjustment for dietary methyl donor intake did not significantly alter the association. Conclusions for Practice Results did not confirm a statistically significant association between maternal 2nd trimester plasma folate levels and infant bronchiolitis. Further work is needed to investigate the role of folate, particularly higher levels, in association with early childhood respiratory illnesses.

Keywords

Folate Bronchiolitis Prenatal Lower respiratory tract infection Pregnancy 

Notes

Acknowledgements

We acknowledge the vital contributions of the CANDLE study research staff and the families that are enrolled in the Conditions Affecting Neurocognitive Development and Learning in Early Childhood study. We thank the Tennessee Bureau of TennCare (Department of Finance and Administration) and the Tennessee Department of Health (Office of Policy, Planning, and Assessment) for providing data needed for this study. This work was supported by the National Institutes of Health, National Heart, Blood, and Lung Institute (Grant R01 HL109977-KNC), the Urban Child Institute (FT) and the National Institutes of Health, National Center for Research Resources (Vanderbilt CTSA Grant UL1 RR024975).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10995_2018_2610_MOESM1_ESM.pdf (75 kb)
Supplementary material 1 (PDF 74 KB)
10995_2018_2610_MOESM2_ESM.pdf (83 kb)
Supplementary material 2 (PDF 82 KB)

References

  1. Adcock, I. M., Tsaprouni, L., Bhavsar, P., & Ito, K. (2007). Epigenetic regulation of airway inflammation. Current Opinions in Immunology, 19(6), 694–700.CrossRefGoogle Scholar
  2. Alfonso, V. H., Bandoli, G., von Ehrenstein, O., & Ritz, B. (2018). Early folic acid supplement initiation and risk of adverse early childhood respiratory health: A population-based Study. Maternal and Child Health Journal, 22(1), 111–119:11.CrossRefPubMedGoogle Scholar
  3. Bekkers, M. B., Elstgeest, L. E., Scholtens, S., Haveman-Nies, A., de Jongste, J. C., Kerkhof, M., … Wijga, A. H. (2012). Maternal use of folic acid supplements during pregnancy, and childhood respiratory health and atopy. European Respiratory Journal, 39(6), 1468–1474.CrossRefPubMedGoogle Scholar
  4. Bentley, J. R., Ferrini, R. L., & Hill, L. L. (1999). American College of Preventive Medicine public policy statement. Folic acid fortification of grain products in the U.S. to prevent neural tube defects. American Journal of Preventive Medicine, 16(3), 264–267.CrossRefPubMedGoogle Scholar
  5. Branum, A. M., Bailey, R., & Singer, B. J. (2013). Dietary supplement use and folate status during pregnancy in the United States. Journal of Nutrition, 143(4), 486–492.CrossRefPubMedGoogle Scholar
  6. Carroll, K. N., Wu, P., Gebretsadik, T., Griffin, M. R., Dupont, W. D., Mitchel, E. F., & Hartert, T. V. (2009). The severity-dependent relationship of infant bronchiolitis on the risk and morbidity of early childhood asthma. Journal of Allergy and Clinical Immunology, 123(5), 1055.e1–1061.e1CrossRefGoogle Scholar
  7. Centers for Disease Control & Prevention. (2010). Recommendations for the use of folic acid to reduce the number of cases of spina bifida and other neural tube defects. Morbidity and Mortality Weekly Report 1992, 41, 1–7.Google Scholar
  8. Czeizel, A. E., & Dudas, I. (1992). Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. New England Journal of Medicine, 327(26), 1832–1835.CrossRefPubMedGoogle Scholar
  9. Dhur, A., Galan, P., & Hercberg, S. (1991). Folate status and the immune system. Progress in Food & Nutrition Science, 15(1–2), 43–60.Google Scholar
  10. Dunstan, J. A., West, C., McCarthy, S., Metcalfe, J., Meldrum, S., Oddy, W. H., … Prescott, S. L. (2012). The relationship between maternal folate status in pregnancy, cord blood folate levels, and allergic outcomes in early childhood. Allergy, 67(1), 50–57.CrossRefPubMedGoogle Scholar
  11. Dupont, W. D. (2009). Statistical modeling for biomedical researchers: A simple introduction to the analysis of complex data. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  12. Gibson, R. S. (2005). Principles of nutritional assessment. Oxford: Oxford University Press.Google Scholar
  13. Graham, B. S. (2011). Biological challenges and technological opportunities for respiratory syncytial virus vaccine development. Immunological Reviews, 239(1), 149–166.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Haberg, S. E., London, S. J., Nafstad, P., Nilsen, R. M., Ueland, P. M., Vollset, S. E., & Nystad, W. (2011). Maternal folate levels in pregnancy and asthma in children at age 3 years. Journal of Allergy and Clinical Immunology, 127(1), e262–e264CrossRefGoogle Scholar
  15. Haberg, S. E., London, S. J., Stigum, H., Nafstad, P., & Nystad, W. (2009). Folic acid supplements in pregnancy and early childhood respiratory health. Archives of Disease in Childhood, 94(3), 180–184.CrossRefPubMedGoogle Scholar
  16. Harrell, F. E. (2015). Regression modeling strategies with applications to linear models, logistic and ordinal regression, and survival analysis (2nd edn.). New York: Springer.Google Scholar
  17. Kiefte-de Jong, J. C., Timmermans, S., Jaddoe, V. W., Hofman, A., Tiemeier, H., & Steegers, E. A., … Moll, H. A. (2012). High circulating folate and vitamin B-12 concentrations in women during pregnancy are associated with increased prevalence of atopic dermatitis in their offspring. Journal of Nutrition, 142(4), 731–738.CrossRefPubMedGoogle Scholar
  18. Kim, J. H., Jeong, K. S., Ha, E. H., Park, H., Ha, M., Hong, Y. C., … Chang, N. (2015). Relationship between prenatal and postnatal exposures to folate and risks of allergic and respiratory diseases in early childhood. Pediatric Pulmonology, 50(2), 155–163.CrossRefPubMedGoogle Scholar
  19. Leermakers, E. T., Sonnenschein-van der Voort, A. M., Gaillard, R., Hofman, A., de Jongste, J. C., Jaddoe, V. W., & Duijts, L. (2013). Maternal weight, gestational weight gain and preschool wheezing: The Generation R Study. European Respiratory Journal, 42(5), 1234–1243.CrossRefPubMedGoogle Scholar
  20. Magdelijns, F. J., Mommers, M., Penders, J., Smits, L., & Thijs, C. (2011). Folic acid use in pregnancy and the development of atopy, asthma, and lung function in childhood. Pediatrics, 128(1), e135–e144.CrossRefPubMedGoogle Scholar
  21. Martino, D., & Prescott, S. (2011). Epigenetics and prenatal influences on asthma and allergic airways disease. Chest, 139(3), 640–647.CrossRefPubMedGoogle Scholar
  22. Martinussen, M. P., Risnes, K. R., Jacobsen, G. W., & Bracken, M. B. (2012). Folic acid supplementation in early pregnancy and asthma in children aged 6 years. American Journal of Obstetrics & Gynecology, 206(1), e-72.e7CrossRefGoogle Scholar
  23. McDowell, M. A., Lacher, D. A., Pfeiffer, C. M., Mulinare, J., Picciano, M. F., Rader, J. I., … Johnson, C. L. (2008). Blood folate levels: The latest NHANES results. NCHS Data Brief, 6, 1–8.Google Scholar
  24. Nair, H., Nokes, D. J., Gessner, B. D., Dherani, M., Madhi, S. A., Singleton, R. J., … Campbell, H. (2010). Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: A systematic review and meta-analysis. Lancet, 375(9725), 1545–1555.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Prescott, S. L., & Clifton, V. (2009). Asthma and pregnancy: Emerging evidence of epigenetic interactions in utero. Current Opinion in Allergy and Clinical Immunology, 9(5), 417–426.CrossRefPubMedGoogle Scholar
  26. Ross, M. A., & Zalenski, R. J. (2001). Observation services: Past, present, and future. The American Journal of Medicine, 110(4), 324–325.CrossRefPubMedGoogle Scholar
  27. Roy, A., Kocak, M., Hartman, T. J., Vereen, S., Adgent, M., Piyathilake, C., … Carroll, K. N. (2018). Association of prenatal folate status with early childhood wheeze and atopic dermatitis. Pediatric Allergy and Immunology, 29(2), 144–150.CrossRefPubMedGoogle Scholar
  28. Selhub, J., Jacques, P. F., Dallal, G., Choumenkovitch, S., & Rogers, G. (2008). The use of blood concentrations of vitamins and their respective functional indicators to define folate and vitamin B12 status. Food and Nutrition Bulletin, 29(2 Suppl), S67–S73.CrossRefPubMedGoogle Scholar
  29. Sharma, S., & Litonjua, A. (2014). Asthma, allergy, and responses to methyl donor supplements and nutrients. The Journal of Allergy and Clinical Immunology, 133(5), 1246–1254.CrossRefPubMedGoogle Scholar
  30. Veeranki, S. P., Gebretsadik, T., Dorris, S. L., Mitchel, E. F., Hartert, T. V., Cooper, W. O., … Carroll, K. N. (2014). Association of folic acid supplementation during pregnancy and infant bronchiolitis. American Journal of Epidemiology, 179(8), 938–946.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Völgyi, E., Carroll, K. N., Hare, M. E., Ringwald-Smith, K., Piyathilake, C., Yoo, W., & Tylavsky, F. A. (2013). Dietary patterns in pregnancy and effects on nutrient intake in the mid-south: The Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) Study. Nutrients, 5(5), 1511–1530.CrossRefPubMedPubMedCentralGoogle Scholar
  32. White, G. P., Hollams, E. M., Yerkovich, S. T., Bosco, A., Holt, B. J., Bassami, M. R., … Holt, P. G. (2006). CpG methylation patterns in the IFNgamma promoter in naive T cells: variations during Th1 and Th2 differentiation and between atopics and non-atopics. Pediatric Allergy and Immunology, 17(8), 557–564.CrossRefPubMedGoogle Scholar
  33. White, G. P., Watt, P. M., Holt, B. J., & Holt, P. G. (2002). Differential patterns of methylation of the IFN-gamma promoter at CpG and non-CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO- T cells. Journal of Immunology, 168(6), 2820–2827.CrossRefGoogle Scholar
  34. Whitrow, M. J., Moore, V. M., Rumbold, A. R., & Davies, M. J. (2009). Effect of supplemental folic acid in pregnancy on childhood asthma: A prospective birth cohort study. American Journal of Epidemiology, 170(12), 1486–1493.CrossRefPubMedGoogle Scholar
  35. Willett, W. (1998). Nutritional epidemiology (2nd edn.). New York: Oxford University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shanda Vereen
    • 1
    • 4
    • 5
  • Tebeb Gebretsadik
    • 2
    • 5
  • Nia Johnson
    • 6
  • Terryl J. Hartman
    • 7
  • Sreenivas P. Veeranki
    • 1
    • 4
    • 5
  • Chandrika Piyathilake
    • 8
  • Edward F. Mitchel
    • 3
  • Mehmet Kocak
    • 9
  • William O. Cooper
    • 1
    • 4
  • William D. Dupont
    • 2
    • 5
  • Frances Tylavsky
    • 9
  • Kecia N. Carroll
    • 1
    • 4
    • 5
    • 10
  1. 1.Department of PediatricsVanderbilt University Medical CenterNashvilleUSA
  2. 2.Department of BiostatisticsVanderbilt University Medical CenterNashvilleUSA
  3. 3.Department of Health PolicyVanderbilt University Medical CenterNashvilleUSA
  4. 4.Divisions of General PediatricsVanderbilt University Medical CenterNashvilleUSA
  5. 5.Center for Asthma Health ResearchVanderbilt University Medical CenterNashvilleUSA
  6. 6.Fisk UniversityNashvilleUSA
  7. 7.Department of Epidemiology, Rollins School of Public HealthEmory UniversityAtlantaUSA
  8. 8.Department of Nutrition SciencesUniversity of Alabama at BirminghamBirminghamUSA
  9. 9.Department of Preventive MedicineUniversity of Tennessee Health Science CenterMemphisUSA
  10. 10.Vanderbilt University School of MedicineNashvilleUSA

Personalised recommendations