Maternal and Child Health Journal

, Volume 21, Issue 8, pp 1662–1668 | Cite as

Infant Adiposity is Independently Associated with a Maternal High Fat Diet but not Related to Niacin Intake: The Healthy Start Study

  • Allison L. B. ShapiroEmail author
  • Brandy M. Ringham
  • Deborah H. Glueck
  • Jill M. Norris
  • Linda A. Barbour
  • Jacob E. Friedman
  • Dana Dabelea


Objectives Over-nutrition during pregnancy resulting from maternal obesity or an unhealthy diet can lead to excess infant adiposity at birth. Specific dietary macro- and micronutrients have been shown to increase fat cell development in both in-vitro and in-vivo models and may therefore link maternal diet to increased infant adiposity. We hypothesized that high maternal dietary niacin intake during pregnancy, especially in combination with a high-fat diet (HFD) would increase infant adiposity. Methods We included 1040 participants from a pre-birth cohort of mother-infant pairs. Maternal diet was assessed using multiple 24-hour dietary recalls. HFD was defined as ≥30% of calories from fat and ≥12% of fat calories from saturated fat. Neonatal body composition (% fat mass [%FM], fat mass [FM], fat-free mass [FFM]) was measured by PEAPOD. We used multivariate regression to assess the joint effect of maternal dietary niacin and maternal HFD on neonatal body composition. Results Dietary niacin was not associated with neonatal body composition, and maternal HFD did not modify this finding. However, maternal HFD was independently associated with %FM (β = 0.8 [0.1, 1.4]%, p < 0.01] and FM (β = 32.4 [6.7, 58.0] g, p < 0.01). Conclusions for Practice Our results suggest that a HFD during pregnancy may increase infant adiposity, therefore supporting the need for improved diet counseling of pregnant women at both the clinical and community levels.


Dietary niacin High-fat diet Infant adiposity. 



We would like to sincerely thank Mrs. Mercedes Martinez, the Healthy Start Project Manager and the entire Healthy Start team for their hard work and dedication. We would also like to thank Becky De la Houssaye for her help and guidance with processing of the umbilical cord tissue and optimization of the SIRT1 assay. Further, we would like to thank Dr. Anne Starling for her thoughtful suggestions during manuscript revisions. The Healthy Start study is funded by the National Institute on Diabetes and Digestive and Kidney Diseases (R01 #DK076648). Dabelea is responsible for the final content of this manuscript.

Supplementary material

10995_2016_2258_MOESM1_ESM.docx (44 kb)
Supplementary material 1 (DOCX 44 KB)


  1. Ashino, N. G., Saito, K. N., Souza, F. D., Nakutz, F. S., Roman, E. A., Velloso, L. A.,... Torsoni, & M, A. (2012). Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver. The Journal of Nutritional Biochemistry, 23, 341–348. doi: 10.1016/j.jnutbio.2010.12.011.CrossRefPubMedGoogle Scholar
  2. Bitterman, K. J., Anderson, R. M., Cohen, H. Y., Latorre-Esteves, M., & Sinclair, D. A. (2002). Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. The Journal of Biological Chemistry, 277, 45099–45107. doi: 10.1074/jbc.M205670200.CrossRefPubMedGoogle Scholar
  3. Chasan-Taber, L., Schmidt, M. D., Roberts, D. E., Hosmer, D., Markenson, G., & Freedson, P. S. (2004). Development and validation of a Pregnancy Physical Activity Questionnaire. Medicine and Science in Sports and Exercise, 36(10), 1750–1760.CrossRefPubMedGoogle Scholar
  4. Denu, J. M. (2005). Vitamin B3 and sirtuin function. Trends in Biochemical Sciences, 30, 479–483. doi: 10.1016/j.tibs.2005.07.004.CrossRefPubMedGoogle Scholar
  5. Fischer-Posovszky, P., Kukulus, V., Tews, D., Unterkircher, T., Debatin, K.-M., Fulda, S., & Wabitsch, M. (2010). Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner. The American Journal of Clinical Nutrition, 92, 5–15. doi: 10.3945/ajcn.2009.28435.CrossRefPubMedGoogle Scholar
  6. Franco, J. G., Fernandes, T. P., Rocha, C. P. D., Calviño, C., Pazos-Moura, C. C., Lisboa, P. C.,... Trevenzoli, I. H. (2012). Maternal high-fat diet induces obesity and adrenal and thyroid dysfunction in male rat offspring at weaning. The Journal of Physiology, 590, 5503–5518. doi: 10.1113/jphysiol.2012.240655.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Han, L., Zhou, R., Niu, J., McNutt, M. A., Wang, P., & Tong, T. (2010). SIRT1 is regulated by a PPAR{γ}-SIRT1 negative feedback loop associated with senescence. Nucleic Acids Research, 38, 7458–7471. doi: 10.1093/nar/gkq609.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Harrod, C. S., Chasan-Taber, L., Reynolds, R. M., Fingerlin, T. E., Glueck, D. H., Brinton, J. T., & Dabelea, D. (2014). Physical activity in pregnancy and neonatal body composition: The healthy start study. Obstetrics and Gynecology, 124(2 Pt 1), 257–264. doi: 10.1097/aog.0000000000000373.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hernandez, T. L., Van Pelt, R. E., Anderson, M. A., Reece, M. S., Reynolds, R. M., de la Houssaye, B. A.,... Barbour, L. A. (2016). Women with gestational diabetes mellitus randomized to a higher-complex carbohydrate/low-fat diet manifest lower adipose tissue insulin resistance, inflammation, glucose, and free fatty Acids: A pilot study. Diabetes Care, 39(1), 39–42. doi: 10.2337/dc15-0515.CrossRefPubMedGoogle Scholar
  10. Kipnis, V., Midthune, D., Buckman, D. W., Dodd, K. W., Guenther, P. M., Krebs-Smith, S. M., ... Freedman, L. S. (2009). Modeling data with excess zeros and measurement error: application to evaluating relationships between episodically consumed foods and health outcomes. Biometrics, 65, 1003–1010. doi: 10.1111/j.1541-0420.2009.01223.x.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Krasnow, S. M., Nguyen, M. L. T., & Marks, D. L. (2011). Increased maternal fat consumption during pregnancy alters body composition in neonatal mice. American Journal of Physiology. Endocrinology and Metabolism, 301(6), E1243–E1253. doi: 10.1152/ajpendo.00261.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Liu, X., Lv, L., Zhang, H., Zhao, N., Qiu, J., He, X., ... Zhang, Y (2015). Folic acid supplementation, dietary folate intake and risk of preterm birth in China. European Journal of Nutrition. doi: 10.1007/s00394-015-0959-1.Google Scholar
  13. McCurdy, C. E., Bishop, J. M., Williams, S. M., Grayson, B. E., Smith, M. S., Friedman, J. E., & Grove, K. L. (2009). Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. The Journal of Clinical Investigation, 119(2), 323–335. doi: 10.1172/jci32661.PubMedPubMedCentralGoogle Scholar
  14. Nisar, Y. B., Dibley, M. J., Mebrahtu, S., Paudyal, N., & Devkota, M. (2015). Antenatal iron-folic acid supplementation reduces neonatal and under-5 mortality in Nepal. The Journal of Nutrition, 145(8), 1873–1883. doi: 10.3945/jn.114.206565.CrossRefPubMedGoogle Scholar
  15. Ogden, C. L., Carroll, M. D., Fryar, C. D., & Flegal, K. M. (2015). Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief(219), 1–8.Google Scholar
  16. Okubo, H., Miyake, Y., Sasaki, S., Tanaka, K., Murakami, K., Hirota, Y., Ohya, Y. (2012). Maternal dietary patterns in pregnancy and fetal growth in Japan: The Osaka Maternal and Child Health Study. The British Journal of Nutrition, 107, 1526–1533. doi: 10.1017/S0007114511004636.CrossRefPubMedGoogle Scholar
  17. Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., De Oliveira, R. M., ... Guarente, L (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature, 429, 771–776. doi: 10.1038/nature02583.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Shapiro, A. L., Kaar, J. L., Crume, T. L., Starling, A. P., Siega-Riz, A. M., Ringham, B. M., ... Dabelea, D (2016). Maternal diet quality in pregnancy and neonatal adiposity: The Healthy Start Study. International Journal of Obesity, 40(7), 1056–1062. doi: 10.1038/ijo.2016.79.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Starling, A. P., Brinton, J. T., Glueck, D. H., Shapiro, A. L., Harrod, C. S., Lynch, A. M., ... Dabelea, D (2015). Associations of maternal BMI and gestational weight gain with neonatal adiposity in the Healthy Start Study. The American Journal of Clinical Nutrition, 101, 302–309. doi: 10.3945/ajcn.114.094946.CrossRefPubMedGoogle Scholar
  20. Timmermans, S., Steegers-Theunissen, R. P., Vujkovic, M., den Breeijen, H., Russcher, H., Lindemans, J., ... Steegers, E. A. (2012). The Mediterranean diet and fetal size parameters: The Generation R Study. The British Journal of Nutrition, 108, 1399–1409. doi: 10.1017/S000711451100691X.CrossRefPubMedGoogle Scholar
  21. Tooze, J. A., Kipnis, V., Buckman, D. W., Carroll, R. J., Freedman, L. S., Guenther, P. M., .... Dodd, K. W. (2010). A mixed-effects model approach for estimating the distribution of usual intake of nutrients: the NCI method. Statistics in Medicine, 29, 2857–2868. doi: 10.1002/sim.4063.CrossRefPubMedGoogle Scholar
  22. Tooze, J. A., Midthune, D., Dodd, K. W., Freedman, L. S., Krebs-Smith, S. M., Subar, A. F., .... Kipnis, V. (2006). A new statistical method for estimating the usual intake of episodically consumed foods with application to their distribution. Journal of the American Dietetic Association, 106, 1575–1587. doi: 10.1016/j.jada.2006.07.003.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Woo Baidal, J. A., Locks, L. M., Cheng, E. R., Blake-Lamb, T. L., Perkins, M. E., & Taveras, E. M. (2016). Risk factors for childhood obesity in the first 1000 days: A systematic review. American Journal of Preventive Medicine, 50(6), 761–779. doi: 10.1016/j.amepre.2015.11.012.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Allison L. B. Shapiro
    • 1
    Email author
  • Brandy M. Ringham
    • 2
  • Deborah H. Glueck
    • 2
  • Jill M. Norris
    • 1
  • Linda A. Barbour
    • 3
  • Jacob E. Friedman
    • 4
  • Dana Dabelea
    • 1
  1. 1.Department of Epidemiology, Colorado School of Public Health (CSPH)University of Colorado Anschutz Medical CampusDenverUSA
  2. 2.Department of Biostatistics, CSPHUniversity of Colorado Anschutz Medical CampusDenverUSA
  3. 3.Departments of Medicine and Obstetrics and Gynecology, School of MedicineUniversity of ColoradoDenverUSA
  4. 4.Departments of Pediatrics and Biochemistry & Molecular Genetics, School of MedicineUniversity of ColoradoDenverUSA

Personalised recommendations