Maternal and Child Health Journal

, Volume 20, Issue 6, pp 1296–1304 | Cite as

Association Between Low Dairy Intake During Pregnancy and Risk of Small-for-Gestational-Age Infants

  • Rocío Olmedo-Requena
  • Carmen Amezcua-Prieto
  • Juan de Dios Luna-Del-Castillo
  • Anne-Mary Lewis-Mikhael
  • Juan Mozas-Moreno
  • Aurora Bueno-Cavanillas
  • José Juan Jiménez-Moleón


Background Inadequate maternal nutrition is regarded as one of the most important indicators of fetal growth. The aim of this study was to analyze the associated risk of having a small for gestational age (SGA) infant according to the mother’s dairy intake during the first half of pregnancy. Methods A prospective cohort study was performed using 1175 healthy pregnant women selected from the catchment area of Virgen de las Nieves University Hospital, Granada (Spain). SGA was defined as neonates weighing less than the 10th percentile, adjusted for gestational age. Factors associated with SGA were analyzed using logistic regression models. Population attributable fractions of SGA according to dairy intake were estimated. Results Dairy intake among women who gave birth to SGA infants was 513.9, versus 590.3 g/day for women with appropriate size for gestational age infants (P = 0.003). An increased intake of dairy products by 100 g/day during the first half of pregnancy decreased the risk of having a SGA infant by 11.0 %, aOR = 0.89 (0.83, 0.96). A dose–response gradient between dairy intake and SGA was observed. Conclusions An inadequate intake of dairy products is associated with a higher risk of SGA. Our results suggest a possible causal relation between dairy intake during pregnancy and the weight of the newborn, although we cannot discard residual confounding. These results should be further supported by properly designed studies.


Maternal nutrition Dairy intake Pregnancy Population attributable fraction Small for gestational age 



Small for gestational age


Large for gestational age


Appropriate size for gestational age


Metabolic equivalent of task


Adjusted odds ratio


Population attributable fraction


Directed acyclic graph



The authors thank Jean Sanders for improving the use of English in the manuscript. The results of this study are part of Ph.D. work of Rocío Olmedo-Requena. The present study was funded by FIS Scientific Research Project PI 03/1207 and Junta de Andalucía Excellence Project 2005 CTS 942, as well as the Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP).

Compliance with Ethical Standards

Conflict of interest

The authors of this paper declare that they have no conflicts of interest.


  1. 1.
    Grisaru-Granovsky, S., Reichman, B., Lerner-Geva, L., et al. (2012). Mortality and morbidity in preterm small-for-gestational-age infants: A population-based study. American Journal of Obstetrics and Gynecology, 206, 150.e1-7.CrossRefPubMedGoogle Scholar
  2. 2.
    Werner, E. F., Savitz, D. A., Janevic, T. M., et al. (2012). Mode of delivery and neonatal outcomes in preterm, small-for-gestational-age newborns. Obstetrics and Gynecology, 120, 560–564.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    McCowan, L., & Horgan, R. P. (2009). Risk factors for small for gestational age infants. Best Practice and Research Clinical Obstetrics and Gynaecology, 23, 779–793.CrossRefPubMedGoogle Scholar
  4. 4.
    Timmermans, S., Steegers-Theunissen, R. P., Vujkovic, M., et al. (2012). The Mediterranean diet and fetal size parameters: The generation R study. British Journal of Nutrition, 108, 1399–1409.CrossRefPubMedGoogle Scholar
  5. 5.
    Olausson, H., Goldberg, G. R., Laskey, M. A., et al. (2012). Calcium economy in human pregnancy and lactation. Nutrition Research Reviews, 25, 40–67.CrossRefPubMedGoogle Scholar
  6. 6.
    Dietary Reference Intakes (DRI) for the Spanish Population. (2010). Federación Española de Sociedades de Nutrición, Alimentación y Dietética, FESNAD, Vol. 14, pp. 196–197.Google Scholar
  7. 7.
    Gil A. Leche y derivados lácteos. (2010). In A. Gil Hernández, & M. D. Ruiz López (Eds.), Madrid Tratado de nutrición: Composición y calidad nutritiva de los alimentos [Nutrition treatise: Composition and nutritional quality of foods] (pp. 1–26). Médica Panamericana.Google Scholar
  8. 8.
    United States department of agriculture (USDA). Tips for pregnant moms (2013). Accessed February 2013.
  9. 9.
    Sociedad Española de Nutrición Comunitaria (SENC) y Sociedad Española de Medicina de Familia y Comunitaria (semFYC) (2007). Consejos para una alimentación saludable [Tips for healthy eating].
  10. 10.
    Brantsæter, A. L., Olafsdottir, A. S., Forsum, E., et al. (2012). Does milk and dairy consumption during pregnancy influence fetal growth and infant birthweight? A systematic literature review. Food and Nutrition Research, 56, 1–13.Google Scholar
  11. 11.
    Dirección General de Salud Pública, Junta de Andalucía. (2006). Manual de atención al embarazo, parto y puerperio [Guidelines for pregnancy, delivery, and puerperium care]. Consejería de Salud, Junta de Andalucía.Google Scholar
  12. 12.
    Olmedo-Requena, R., Fernández, J. G., Prieto, C. A., et al. (2014). Factors associated with a low adherence to a Mediterranean diet pattern in healthy spanish women before pregnancy. Public Health Nutrition, 17, 648–656.CrossRefPubMedGoogle Scholar
  13. 13.
    Amezcua Prieto, C., Olmedo Requena, R., Jiménez Mejías, E., et al. (2013). Changes in leisure time physical activity during pregnancy compared to the prior year. Maternal and Child Health Journal, 17, 632–638.CrossRefPubMedGoogle Scholar
  14. 14.
    Martin-Moreno, J., Boyle, P., Gorgojo, L., et al. (1993). Development and validation of a food frequency questionnaire in Spain. International Journal of Epidemiology, 22, 512–519.CrossRefPubMedGoogle Scholar
  15. 15.
    Razquin, C., Martínez, J. A., Martinez-Gonzalez, M. A., et al. (2010). A 3-year Mediterranean-style dietary intervention may modulate the association between adiponectin gene variants and body weight change. European Journal of Nutrition, 49, 311–319.CrossRefPubMedGoogle Scholar
  16. 16.
    Beunza, J. J., Toledo, E., Hu, F. B., et al. (2010). Adherence to the Mediterranean diet, long-term weight change, and incident overweight or obesity: The seguimiento Universidad de Navarra (SUN) cohort. American Journal of Clinical Nutrition, 92, 1484–1493.CrossRefPubMedGoogle Scholar
  17. 17.
    Mataix, J. (2009). Tabla de Composición de Alimentos Españoles [Food composition tables]. Universidad de Granada. Granada, pp 1–555.Google Scholar
  18. 18.
    Willett, W. (1998). Nutritional epidemiology. New York: Oxford University Press.CrossRefGoogle Scholar
  19. 19.
    Pereira, M. A., Fitzergerald, S. J., Gregg, E. W., et al. (1997). A collection of physical activity questionnaires for health-related research. Medicine and Science in Sports and Exercise, 29, S1–S205.CrossRefPubMedGoogle Scholar
  20. 20.
    Ainsworth, B. E., Haskell, W. L., Whitt, M. C., et al. (2000). Compendium of physical activities: An update of activity codes and MET intensities. Medicine and Science in Sports and Exercise, 32, S498–S504.CrossRefPubMedGoogle Scholar
  21. 21.
    WHO. (2000) Obesity: Preventing and managing the global epidemic. Joint WHO/FAO expert consultation. WHO Technical Report Series No. 894. Geneva: WHO.Google Scholar
  22. 22.
    Álvarez-Dardet, C., Alonso, J., & Domingo, A., et al. (1995). La medición de la clase social en ciencias de la salud [Measuring Social Class in Health Sciences]. In Informe de un Grupo de Trabajo de la Sociedad Española de Epidemiología. Barcelona: SG editores, pp. 63–67.Google Scholar
  23. 23.
    Mora, P., Gobernado, J. A., Pérez-Milán, F., et al. (2010). Estados hipertensivos del embarazo: Resultados perinatales [pregnancy-induced hypertension: Perinatal outcomes]. Clínica e investigación en Ginecología y Obstetricia, 37, 56–62.CrossRefGoogle Scholar
  24. 24.
    Santamaría Lozano, R., Verdú Martín, L., & García López, G. (1998). Tablas españolas de pesos neonatales según edad gestacional [Spanish tables of neonatal weight by gestational age]. Badalona: Artes Gráficas Beatulo.Google Scholar
  25. 25.
    González González, N. L., González Dávila, E., García Hernández, J. A., et al. (2014). Construction of model for calculating and recording neonatal weight percentiles. Anales de Pediatría (Barcelona), 80, 81–88.CrossRefGoogle Scholar
  26. 26.
    Carrascosa, A., Yeste, D., Copil, A., et al. (2004). Anthropometric growth patterns of preterm and full-term newborns (24–42 weeks’ gestational age) at the Hospital Materno-Infantil Vall d’Hebron (Barcelona, Spain) 1997–2002. Anales de Pediatría (Barcelona), 60, 406–416.Google Scholar
  27. 27.
    Aulinas, A., Biagetti, B., Vinagre, I., et al. (2013). Gestational diabetes mellitus and maternal ethnicity: High prevalence of fetal macrosomia in non-Caucasian women. Medicina Clinica (Barcelona), 141, 240–245.CrossRefGoogle Scholar
  28. 28.
    Ricart, W., López, J., Mozas, J., et al. (2009). Maternal glucose tolerance status influences the risk of macrosomia in male but not in female fetuses. Journal of Epidemiology and Community Health, 63, 64–68.CrossRefPubMedGoogle Scholar
  29. 29.
    Mahadevan, S., Kumaravel, V., & Bharath, R. (2012). Calcium and bone disorders in pregnancy. Indian Journal of Endocrinology and Metabolism, 16, 358–363.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hoppe, C., Udam, T. R., Lauritzen, L., et al. (2004). Animal protein intake, serum insulin-like growth factor I, and growth in healthy 2.5-y-old Danish children. American Journal of Clinical Nutrition, 80, 447–452.PubMedGoogle Scholar
  31. 31.
    Zhu, K., Du, X., Cowell, C. T., et al. (2005). Effects of school milk intervention on cortical bone accretion and indicators relevant to bone metabolism in Chinese girls aged 10–12 y in Beijing. American Journal of Clinical Nutrition, 81, 1168–1175.PubMedGoogle Scholar
  32. 32.
    Heppe, D., van Dam, R., Willemsen, S., et al. (2011). Maternal milk consumption, fetal growth, and the risks of neonatal complications: The generation R study. American Journal of Clinical Nutrition, 94, 501–509.CrossRefPubMedGoogle Scholar
  33. 33.
    Xue, F., Willett, W., Rosner, B., et al. (2008). Parental characteristics as predictors of birthweight. Human Reproduction, 23, 168–177.CrossRefPubMedGoogle Scholar
  34. 34.
    Olsen, S., Halldorsson, T., Willett, W., et al. (2007). Milk consumption during pregnancy is associated with increased infant size at birth: Prospective cohort study. American Journal of Clinical Nutrition, 86, 1104–1110.PubMedGoogle Scholar
  35. 35.
    Mannion, C., Gray-Donald, K., & Koski, K. (2006). Association of low intake of milk and vitamin D during pregnancy with decreased birth weight. Canadian Medical Association Journal, 174, 1273–1277.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mitchell, E. A., Robinson, E., Clark, P. M., et al. (2004). Maternal nutritional risk factors for small for gestational age babies in a developed country: A case-control study. Archives of Disease in Childhood. Fetal and Neonatal Edition, 89, F431–F435.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Moore, V. M., Davies, M. J., Willson, K. J., et al. (2004). Dietary composition of pregnant women is related to size of the baby at birth. Journal of Nutrition, 134, 1820–1826.PubMedGoogle Scholar
  38. 38.
    Ludvigsson, J. F., & Ludvigsson, J. (2004). Milk consumption during pregnancy and infant birthweight. Acta Paediatrica, 93, 1474–1478.CrossRefPubMedGoogle Scholar
  39. 39.
    Hrolfsdottir, L., Rytter, D., Hammer Bech, B., et al. (2013). Maternal milk consumption, birth size and adult height of offspring: A prospective cohort study with 20 years of follow-up. European Journal of Clinical Nutrition, 67, 1036–1041.CrossRefPubMedGoogle Scholar
  40. 40.
    WHO. (2012). Metas Globales 2025: Para mejorar la nutrición materna, del lactante y del niño pequeño [Global goals 2025: For the improvement of the maternal, infant and young child]. Accessed February.
  41. 41.
    Nayeri, F., Dalili, H., Nili, F., et al. (2013). Risk factors for neonatal mortality among very low birth weight neonates. Acta Medica Iranica, 51, 297–302.PubMedGoogle Scholar
  42. 42.
    Hebert, J. R., Clemow, L., Pbert, L., et al. (1995). Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. International Journal of Epidemiology, 24, 389–398.CrossRefPubMedGoogle Scholar
  43. 43.
    Cuco, G., Fernández-Ballart, J., Sala, J., et al. (2006). Dietary patterns and associated lifestyles in preconception, pregnancy and postpartum. European Journal of Clinical Nutrition, 60, 364–371.CrossRefPubMedGoogle Scholar
  44. 44.
    Elwood, P. C., Haley, T. J., Hughes, S. J., et al. (1981). Child growth (0–5 years), and the effect of entitlement to a milk supplement. Archives of Disease in Childhood, 56, 831–835.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rocío Olmedo-Requena
    • 1
    • 2
    • 3
  • Carmen Amezcua-Prieto
    • 1
    • 2
    • 3
  • Juan de Dios Luna-Del-Castillo
    • 2
    • 4
  • Anne-Mary Lewis-Mikhael
    • 1
  • Juan Mozas-Moreno
    • 3
    • 5
  • Aurora Bueno-Cavanillas
    • 1
    • 2
    • 3
  • José Juan Jiménez-Moleón
    • 1
    • 2
    • 3
  1. 1.Department of Preventive Medicine and Public HealthUniversity of GranadaGranadaSpain
  2. 2.Instituto de Investigación Biosanitaria ibs.GRANADAComplejo Hospitales Universitarios de Granada/Universidad de GranadaGranadaSpain
  3. 3.CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
  4. 4.Department of Statistics and Operative InvestigationUniversity of GranadaGranadaSpain
  5. 5.Obstetrics and Gynecology ServiceVirgen de las Nieves University HospitalGranadaSpain

Personalised recommendations