Maternal and Child Health Journal

, Volume 19, Issue 12, pp 2548–2551 | Cite as

The Relationship Between Apparent Temperature and Daily Number of Live Births in Montreal

  • Tarik Benmarhnia
  • Nathalie Auger
  • Virginie Stanislas
  • Ernest Lo
  • Jay S. Kaufman
Brief Reports



Temperature is a hypothesized determinant of early delivery, but seasonal and long term trends, delayed effects of temperature, and the influence of extreme cold temperatures have not yet been addressed. We aim to study the influence of apparent temperature on daily number of births, considering lag structures, seasonality and long term trends.


We used daily number of births in conjunction with apparent outdoor temperatures between 1981 and 2010 in Montreal. We used Poisson regression combined with a distributed lag nonlinear model to consider non-linear relationships between temperature and daily number of births across specific lag periods.


We found that apparent temperature was associated with the daily number of births in Montreal, with a 1-day delay. We found an increase in births on hot days, and decrease on cold days, both offset by a harvesting effect after 4 and 5 days.

Conclusions for Practice

This study suggests that the number of births is affected by extreme temperatures. Obstetric and perinatal service providers should be prepared for spikes in the number of births caused by extreme temperatures.


Apparent temperature Weather Obstetric and pediatric health planning Time series analysis 


  1. 1.
    Strand, L. B., Barnett, A. G., & Tong, S. (2011). The influence of season and ambient temperature on birth outcomes: A review of the epidemiological literature. Environmental Research, 111(3), 451–462.CrossRefPubMedGoogle Scholar
  2. 2.
    Basu, R., Malig, B., & Ostro, B. (2010). High ambient temperature and the risk of preterm delivery. American Journal of Epidemiology, 172(10), 1108–1117.CrossRefPubMedGoogle Scholar
  3. 3.
    Dadvand, P., Basagana, X., Sartini, C., et al. (2011). Climate extremes and the length of gestation. Environmental Health Perspectives, 119(10), 1449–1453. doi:10.1289/ehp.1003241.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Lajinian, S., Hudson, S., Applewhite, L., et al. (1997). An association between the heat-humidity index and preterm labor and delivery: A preliminary analysis. American Journal of Public Health, 87(7), 1205–1207.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Yackerson, N., Piura, B., & Sheiner, E. (2008). The influence of meteorological factors on the emergence of preterm delivery and preterm premature rupture of membrane. Journal of Perinatology, 28(10), 707–711.CrossRefPubMedGoogle Scholar
  6. 6.
    Vicedo-Cabrera, A. M., Iñíguez, C., Barona, C., et al. (2014). Exposure to elevated temperatures and risk of preterm birth in Valencia, Spain. Environmental Research, 134, 210–217.CrossRefPubMedGoogle Scholar
  7. 7.
    Lee, S. J., Hajat, S., Steer, P. J., et al. (2008). A time-series analysis of any short-term effects of meteorological and air pollution factors on preterm births in London, UK. Environmental Research, 106(2), 185–194.CrossRefPubMedGoogle Scholar
  8. 8.
    Porter, K. R., Thomas, S. D., & Whitman, S. (1999). The relation of gestation length to short-term heat stress. American Journal of Public Health, 89(7), 1090–1092.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Bhaskaran, K., Gasparrini, A., Hajat, S., et al. (2013). Time series regression studies in environmental epidemiology. International Journal of Epidemiology, 42, 1187–1195.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Kalkstein, L. S., & Valimont, K. M. (1986). An evaluation of summer discomfort in the United State using a relative climatological index. Bulletin of the American Meteorological Society, 67(7), 842–848.CrossRefGoogle Scholar
  11. 11.
    Gasparrini, A. (2011). Distributed lag linear and non-linear models in R: The package dlnm. Journal of Statistical Software, 43(8), 1.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Gasparrini, A., Armstrong, B., & Kenward, M. (2010). Distributed lag non-linear models. Statistics in Medicine, 29(21), 2224.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Goodman, M. J., Nelson, W. W., & Maciosek, M. V. (2005). Births by day of week: A historical perspective. Journal of Midwifery & Women’s Health, 50(1), 39–43.CrossRefGoogle Scholar
  14. 14.
    Cesario, S. K. (2002). The “Christmas Effect” and other biometeorologic influences on childbearing and the health of women. Journal of Obstetric, Gynecologic, & Neonatal Nursing, 31(5), 526–535.CrossRefGoogle Scholar
  15. 15.
    Schwartz, J. (2000). Harvesting and long term exposure effects in the relation between air pollution and mortality. American Journal of Epidemiology, 151(5), 440–448.CrossRefPubMedGoogle Scholar
  16. 16.
    Flouris, A. D., Spiropoulos, Y., Sakellariou, G. J., et al. (2009). Short report effect of seasonal programming on fetal development and longevity: Links with environmental temperature. American Journal of Human Biology, 21, 214–216.CrossRefPubMedGoogle Scholar
  17. 17.
    Auger, N., Naimi, A. I., Smargiassi, A., et al. (2014). Extreme heat and risk of early delivery among preterm and term pregnancies. Epidemiology, 25(3), 344–350.CrossRefPubMedGoogle Scholar
  18. 18.
    Carolan-Olah, M., & Frankowska, D. (2014). High environmental temperature and preterm birth: A review of the evidence. Midwifery, 30(1), 50–59.CrossRefPubMedGoogle Scholar
  19. 19.
    Darrow, L. A., Klein, M., Flanders, W. D., et al. (2009). Ambient air pollution and preterm birth: A time-series analysis. Epidemiology (Cambridge, MA), 20(5), 689.CrossRefGoogle Scholar
  20. 20.
    Hansen, C., Neller, A., Williams, G., et al. (2006). Maternal exposure to low levels of ambient air pollution and preterm birth in Brisbane, Australia. BJOG: An International Journal of Obstetrics & Gynaecology, 113(8), 935–941.CrossRefGoogle Scholar
  21. 21.
    Escribà-Agüir, V., Perez-Hoyos, S., & Saurel-Cubizolles, M.-J. (2001). Physical load and psychological demand at work during pregnancy and preterm birth. International Archives of Occupational and Environmental Health, 74(8), 583–588.CrossRefPubMedGoogle Scholar
  22. 22.
    Wang, J., Williams, G., Guo, Y., et al. (2013). Maternal exposure to heatwave and preterm birth in Brisbane, Australia. BJOG: An International Journal of Obstetrics & Gynaecology, 120(13), 1631–1641.CrossRefGoogle Scholar
  23. 23.
    Okun, M. L., Roberts, J. M., Marsland, A. L., et al. (2009). How disturbed sleep may be a risk factor for adverse pregnancy outcomes a hypothesis. Obstetrical & Gynecological Survey, 64(4), 273.CrossRefGoogle Scholar
  24. 24.
    Goldenberg, R. L., Culhane, J. F., Iams, J. D., et al. (2008). Epidemiology and causes of preterm birth. The Lancet, 371(9606), 75–84.CrossRefGoogle Scholar
  25. 25.
    Kammerer, M., Adams, D., Von Castelberg, B., et al. (2002). Pregnant women become insensitive to cold stress. BMC Pregnancy and Childbirth, 2(1), 8.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Evenson, K. R., Savitz, A., & Huston, S. L. (2004). Leisure-time physical activity among pregnant women in the US. Paediatric and Perinatal Epidemiology, 18(6), 400–407.CrossRefPubMedGoogle Scholar
  27. 27.
    Alexander, G. R., & Kotelchuck, M. (2001). Assessing the role and effectiveness of prenatal care: History, challenges, and directions for future research. Public Health Reports, 116(4), 306.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Deschênes, O., Greenstone, M., & Guryan, J. (2009). Climate change and birth weight. The American Economic Review, 99, 211–217.CrossRefGoogle Scholar
  29. 29.
    McPheeters, M. L., Miller, W. C., Hartmann, K. E., et al. (2005). The epidemiology of threatened preterm labor: A prospective cohort study. American Journal of Obstetrics and Gynecology, 192(4), 1325–1329.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tarik Benmarhnia
    • 1
  • Nathalie Auger
    • 2
  • Virginie Stanislas
    • 2
  • Ernest Lo
    • 2
  • Jay S. Kaufman
    • 3
  1. 1.Institute for Health and Social PolicyMcGill UniversityMontrealCanada
  2. 2.Institut National de Santé Publique du QuébecMontrealCanada
  3. 3.Department of Epidemiology, Biostatistics, and Occupational HealthMcGill UniversityMontrealCanada

Personalised recommendations