Maternal and Child Health Journal

, Volume 18, Issue 8, pp 2013–2019 | Cite as

The Relation of a Woman’s Impaired in Utero Growth and Association of Diabetes During Pregnancy

  • Reeti ChawlaEmail author
  • Kristin M. Rankin
  • James W. CollinsJr.


Small for gestational age (weight for gestational age <10th percentile, SGA) birth status and adulthood susceptibility to diabetes is well established, but the relationship to diabetes during pregnancy is incompletely understood. The authors investigated the association between women’s impaired fetal growth (as measured by SGA status) and diabetes mellitus (DM) during pregnancy. Stratified and multivariable binomial regression analyses were performed on the Illinois transgenerational dataset. Former SGA (n = 13,934) mothers had a greater prevalence of DM during pregnancy than former appropriate for gestational age (AGA) mothers (n = 116,683): 2.7 versus 1.9 %, relative prevalence (RP) equaled 1.4 [95 % confidence interval (CI)1.3, 1.6]. In a multivariable binomial regression model, the adjusted RP (95 %CI) (controlling for maternal age, education, parity, plurality, marital status, and race/ethnicity) for DM during pregnancy for former SGA (compared to AGA) mothers equaled 1.5 (1.3, 1.6). When stratified by race/ethnicity, the adjusted RP (95 % CI) of DM during pregnancy for former SGA (compared to AGA), non-Latina White, African-American, and Mexican-American mothers was 1.4 (1.3, 1.6), 1.6 (1.2, 2.1), and 2.3 (1.1, 4.7), respectively. The authors conclude that impaired fetal growth (as measured by SGA status) is a risk factor for DM during pregnancy among the leading racial/ethnic groups in the United States.


SGA Low birth weight Pregnancy Diabetes mellitus 



This study was funded by a research Grant from the March of Dimes (12-FY09-159, to J.W.C).


  1. 1.
    Gluckman, P. D., Hanson, M. A., Cooper, C., & Thornburg, K. L. (2008). Effect of in utero and early-life conditions on adult health and disease. New England Journal of Medicine, 359, 61–73.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Whincup, P. H., Kaye, S. J., Owen, C. G., Huxley, R., Cook, D. G., Anazawa, S., et al. (2008). Birth weight and risk of type 2 diabetes: A systematic review. JAMA, 300, 2886–2897.PubMedCrossRefGoogle Scholar
  3. 3.
    Burke, J. P., Forsgren, J., Palumbo, P. J., Bailey, K. R., Desai, J., Devlin, H., et al. (2004). Association of birth weight and type 2 diabetes in Rochester, Minnesota. Diabetes Care, 27, 2512–2513.PubMedCrossRefGoogle Scholar
  4. 4.
    Eriksson, J. G., Forsen, T. J., Osmond, C., & Barker, D. J. (2003). Pathways of infant and childhood growth that lead to type 2 diabetes. Diabetes Care, 26, 3006–3010.PubMedCrossRefGoogle Scholar
  5. 5.
    Forsen, T., Eriksson, J., Tuomilehto, J., Reunanen, A., Osmond, C., & Barker, D. (2000). The fetal and childhood growth of persons who develop type 2 diabetes. Annals of Internal Medicine, 133, 176–182.PubMedCrossRefGoogle Scholar
  6. 6.
    Hales, C. N., Barker, D. J., Clark, P. M., Cox, L. J., Fall, C., Osmond, C., et al. (1991). Fetal and infant growth and impaired glucose tolerance at age 64. BMJ, 303, 1019–1022.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Levy-Marchal, C., & Jaquet, D. (2004). Long-term metabolic consequences of being born small for gestational age. Pediatric Diabetes, 5, 147–153.PubMedCrossRefGoogle Scholar
  8. 8.
    Harris, M. I., Flegal, K. M., Cowie, C. C., Eberhardt, M. S., Goldstein, D. E., Little, R. R., et al. (1998). Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care, 21, 518–524.PubMedCrossRefGoogle Scholar
  9. 9.
    Centers for Disease Control and Prevention. (1998). Diabetes during pregnancy—United States, 1993–1995. MMWR. Morbidity and Mortality Weekly Report, 47, 408–414.Google Scholar
  10. 10.
    Moses, R. G., Moses, J., & Knights, S. (1999). Birth weight of women with gestational diabetes. Diabetes Care, 22, 1059–1062.PubMedCrossRefGoogle Scholar
  11. 11.
    Innes, K. E., Byers, T. E., Marshall, J. A., Baron, A., Orleans, M., & Hamman, R. F. (2002). Association of a woman’s own birth weight with subsequent risk for gestational diabetes. JAMA, 287, 2534–2541.PubMedCrossRefGoogle Scholar
  12. 12.
    Barker, D. J., & Thornburg, K. L. (2013). The obstetric origins of health for a lifetime. Clinical Obstetrics and Gynecology, 56, 511–519.PubMedCrossRefGoogle Scholar
  13. 13.
    Saenger, P., Czernichow, P., & Hughes, I. (2007). Reiter EO: Small for gestational age: Short stature and beyond. Endocrine Reviews, 28, 219–251.PubMedCrossRefGoogle Scholar
  14. 14.
    Jaquet, D., Deghmoun, S., Chevenne, D., Czernichow, P., & Levy-Marchal, C. (2006). Low serum adiponectin levels in subjects born small for gestational age: Impact on insulin sensitivity. International Journal of Obesity, 30, 83–87.PubMedCrossRefGoogle Scholar
  15. 15.
    David, R., Rankin, K., Lee, K., Prachand, N., Love, C., & Collins, J, Jr. (2010). The Illinois transgenerational birth file: Life-course analysis of birth outcomes using vital records and census data over decades. Maternal and Child Health Journal, 14, 121–132.PubMedCrossRefGoogle Scholar
  16. 16.
    Alexander, G. R., Himes, J. H., Kaufman, R. B., Mor, J., & Kogan, M. (1996). A United States national reference for fetal growth. Obstetrics and Gynecology, 87, 163–168.PubMedCrossRefGoogle Scholar
  17. 17.
    Kotelchuck, M. (1994). The Adequacy of Prenatal Care Utilization Index: Its US distribution and association with low birthweight. American Journal of Public Health, 84, 1486–1489.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Skov, T., Deddens, J., Petersen, M. R., & Endahl, L. (1998). Prevalence proportion ratios: Estimation and hypothesis testing. International Journal of Epidemiology, 27, 91–95.PubMedCrossRefGoogle Scholar
  19. 19.
    SAS institute Inc. (2000–2004). SAS 9.1.3 SAS/STAT. Cary, NC: SAS Institute Inc.Google Scholar
  20. 20.
    Miettinen, O. S. (1974). Proportion of disease caused or prevented by a given exposure, trait or intervention. American Journal of Epidemiology, 99, 325–332.PubMedGoogle Scholar
  21. 21.
    Egeland, G. M., Skjaerven, R., & Irgens, L. M. (2000). Birth characteristics of women who develop gestational diabetes: Population based study. BMJ, 321, 546–547.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Williams, M. A., Emanuel, I., Kimpo, C., Leisenring, W. M., & Hale, C. B. (1999). A population-based cohort study of the relation between maternal birthweight and risk of gestational diabetes mellitus in four racial/ethnic groups. Paediatric and Perinatal Epidemiology, 13, 452–465.PubMedCrossRefGoogle Scholar
  23. 23.
    Lagerros, Y. T., Cnattingius, S., Granath, F., Hanson, U., & Wikstrom, A. K. (2012). From infancy to pregnancy: Birth weight, body mass index, and the risk of gestational diabetes. European Journal of Epidemiology, 27, 799–805.PubMedCrossRefGoogle Scholar
  24. 24.
    Rogvi, R., Forman, J. L., Damm, P., & Greisen, G. (2012). Women born preterm or with inappropriate weight for gestational age are at risk of subsequent gestational diabetes and pre-eclampsia. PLoS ONE, 7, e34001.CrossRefGoogle Scholar
  25. 25.
    Boivin, A., Luo, Z. C., Audibert, F., Masse, B., Lefebvre, F., Tessier, R., et al. (2012). Pregnancy complications among women born preterm. CMAJ, 184, 1777–1784.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hofman, P. L., Cutfield, W. S., Robinson, E. M., Bergman, R. N., Menon, R. K., Sperling, M. A., et al. (1997). Insulin resistance in short children with intrauterine growth retardation. Journal of Clinical Endocrinology and Metabolism, 82, 402–406.PubMedGoogle Scholar
  27. 27.
    Godfrey, K. M., Sheppard, A., Gluckman, P. D., Lillycrop, K. A., Burdge, G. C., McLean, C., et al. (2011). Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes, 60, 1528–1534.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Soto, N., Bazaes, R. A., Pena, V., Salazar, T., Avila, A., Iniguez, G., et al. (2003). Insulin sensitivity and secretion are related to catch-up growth in small-for-gestational-age infants at age 1 year: Results from a prospective cohort. J Clin Endocrinol Metab, 88, 3645–3650.PubMedCrossRefGoogle Scholar
  29. 29.
    Isganaitis, E., Jimenez-Chillaron, J., Woo, M., Chow, A., DeCoste, J., Vokes, M., et al. (2009). Accelerated postnatal growth increases lipogenic gene expression and adipocyte size in low-birth weight mice. Diabetes, 58, 1192–1200.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Devlin, H. M., Desai, J., & Walaszek, A. (2009). Reviewing performance of birth certificate and hospital discharge data to identify births complicated by maternal diabetes. Maternal and Child Health Journal, 13, 660–666.PubMedCrossRefGoogle Scholar
  31. 31.
    Metzger, B. E. (2007). Long-term outcomes in mothers diagnosed with gestational diabetes mellitus and their offspring. Clinical Obstetrics and Gynecology, 50, 972–979.PubMedCrossRefGoogle Scholar
  32. 32.
    O’Sullivan, J. B., & Mahan, C. M. (1964). Criteria for the oral glucose tolerance test in pregnancy. Diabetes, 13, 278–285.PubMedGoogle Scholar
  33. 33.
    Metzger, B. E., Lowe, L. P., Dyer, A. R., Trimble, E. R., Chaovarindr, U., Coustan, D. R., et al. (2008). Hyperglycemia and adverse pregnancy outcomes. New England Journal of Medicine, 358, 1991–2002.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Reeti Chawla
    • 1
    Email author
  • Kristin M. Rankin
    • 2
  • James W. CollinsJr.
    • 3
  1. 1.Division of Pediatric Endocrinology, Ann & Robert H. Lurie Children’s Hospital of ChicagoNorthwestern University Feinberg School of MedicineChicagoUSA
  2. 2.School of Public HealthUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Division of Neonatology, Ann and Robert H. Lurie Children’s Hospital of ChicagoNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations