Skip to main content

First Trimester Exposure to Ambient Air Pollution, Pregnancy Complications and Adverse Birth Outcomes in Allegheny County, PA

Abstract

Despite numerous studies of air pollution and adverse birth outcomes, few studies have investigated preeclampsia and gestational hypertension, two pregnancy disorders with serious consequences for both mother and infant. Relying on hospital birth records, we conducted a cohort study identifying 34,705 singleton births delivered at Magee-Women’s Hospital in Pittsburgh, PA between 1997 and 2002. Particle (<10 μm-PM10; <2.5 μm-PM2.5) and ozone (O3) exposure concentrations in the first trimester of pregnancy were estimated using the space–time ordinary Kriging interpolation method. We employed multiple logistic regression estimate associations between first trimester exposures and preeclampsia, gestational hypertension, preterm delivery, and small for gestational age (SGA) infants. PM2.5 and O3 exposures were associated with preeclampsia (adjusted OR = 1.15, 95 % CI = 0.96–1.39 per 4.0 μg/m3 increase in PM2.5; adjusted OR = 1.12, 95 % CI = 0.89–1.42 per 16.8 ppb increase in O3), gestational hypertension (for PM2.5 OR = 1.11, 95 % CI = 1.00–1.23; for O3 OR = 1.12, 95 % CI = 0.97–1.29), and preterm delivery (for PM2.5 ORs = 1.10, 95 % CI = 1.01–1.20; for O3 ORs = 1.23, 95 % CI = 1.01–1.50). Smaller 5–8 % increases in risk were also observed for PM10 with gestational hypertension and SGA, but not preeclampsia. Our data suggest that first trimester exposure to particles, mostly PM2.5, and ozone, may increase the risk of developing preeclampsia and gestational hypertension, as well as preterm delivery and SGA.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Sibai, B., Dekker, G., & Kupferminc, M. (2005). Pre-eclampsia. Lancet, 365(9461), 785–799. doi:10.1016/s0140-6736(05)17987-2.

    PubMed  Google Scholar 

  2. 2.

    Goldenberg, R. L., & Rouse, D. J. (1998). Prevention of premature birth. New England Journal of Medicine, 339(5), 313–320. doi:10.1056/nejm199807303390506.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Roberts, J. M., & Gammill, H. S. (2005). Preeclampsia: recent insights. Hypertension, 46(6), 1243–1249. doi:10.1161/01.HYP.0000188408.49896.c5.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Arias, F., Rodriquez, L., Rayne, S. C., et al. (1993). Maternal placental vasculopathy and infection: two distinct subgroups among patients with preterm labor and preterm ruptured membranes. American Journal of Obstetrics and Gynecology, 168(2), 585–591.

    PubMed  CAS  Google Scholar 

  5. 5.

    Khong, T. Y., De Wolf, F., Robertson, W. B., et al. (1986). Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. British Journal of Obstetrics and Gynaecology, 93(10), 1049–1059.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Bonzini, M., Carugno, M., Grillo, P., et al. (2010). Impact of ambient air pollution on birth outcomes: systematic review of the current evidences. Medicina del Lavoro, 101(5), 341–363.

    PubMed  CAS  Google Scholar 

  7. 7.

    Ritz, B., Wilhelm, M., Hoggatt, K. J., et al. (2007). Ambient air pollution and preterm birth in the environment and pregnancy outcomes study at the University of California, Los Angeles. American Journal of Epidemiology, 166(9), 1045–1052. doi:10.1093/aje/kwm181.

    PubMed  Article  Google Scholar 

  8. 8.

    Sram, R. J., Binkova, B., Dejmek, J., et al. (2005). Ambient air pollution and pregnancy outcomes: a review of the literature. Environmental Health Perspectives, 113(4), 375–382.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Wilhelm, M., & Ritz, B. (2003). Residential proximity to traffic and adverse birth outcomes in Los Angeles county, California, 1994-1996. Environmental Health Perspectives, 111(2), 207–216.

    PubMed  Article  Google Scholar 

  10. 10.

    Rudra, C. B., Williams, M. A., Sheppard, L., et al. (2011). Ambient carbon monoxide and fine particulate matter in relation to preeclampsia and preterm delivery in Western Washington State. Environmental Health Perspectives. doi:10.1289/ehp.1002947.

    PubMed  Google Scholar 

  11. 11.

    Woodruff T, Morello-Frosch R, Jesdale B (2008) Air pollution and preeclampsia among pregnant women in California, 1996–2004 Epidemiology p S310.

  12. 12.

    Wu, J., Ren, C., Delfino, R. J., et al. (2009). Association between local traffic-generated air pollution and preeclampsia and preterm delivery in the south coast air basin of California. Environmental Health Perspectives, 117(11), 1773–1779. doi:10.1289/ehp.0800334.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    van den Hooven, E. H., Jaddoe, V. W., de Kluizenaar, Y., et al. (2009). Residential traffic exposure and pregnancy-related outcomes: a prospective birth cohort study. Environ Health, 8, 59. doi:10.1186/1476-069x-8-59.

    PubMed  Article  Google Scholar 

  14. 14.

    van den Hooven, E. H., de Kluizenaar, Y., Pierik, F. H., et al. (2011). Air pollution, blood pressure, and the risk of hypertensive complications during pregnancy: the generation R study. Hypertension. doi:10.1161/HYPERTENSIONAHA.110.164087.

    PubMed  Google Scholar 

  15. 15.

    Williams, R. L., Creasy, R. K., Cunningham, G. C., et al. (1982). Fetal growth and perinatal viability in California. Obstetrics and Gynecology, 59(5), 624–632.

    PubMed  CAS  Google Scholar 

  16. 16.

    Bodnar, L. M., & Simhan, H. N. (2008). The prevalence of preterm birth and season of conception. Paediatric and Perinatal Epidemiology, 22(6), 538–545. doi:10.1111/j.1365-3016.2008.00971.x.

    PubMed  Article  Google Scholar 

  17. 17.

    Lee, P. C., Talbott, E. O., Roberts, J. M., et al. (2011). Particulate air pollution exposure and C-reactive protein during early pregnancy. Epidemiology. doi:10.1097/EDE.0b013e31821c6c58.

    Google Scholar 

  18. 18.

    DeCesare, L., Myers, D. E., & Posa, D. (2001). Product-sum covariance for space-time modeling: an environmental application. Envirometrics, 12, 11–23.

    Article  Google Scholar 

  19. 19.

    Bell, M. L., Ebisu, K., & Belanger, K. (2007). Ambient air pollution and low birth weight in Connecticut and Massachusetts. Environmental Health Perspectives, 115(7), 1118–1124. doi:10.1289/ehp.9759.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Mickey, R. M., & Greenland, S. (1989). The impact of confounder selection criteria on effect estimation. American Journal of Epidemiology, 129(1), 125–137.

    PubMed  CAS  Google Scholar 

  21. 21.

    Harskamp, R. E., & Zeeman, G. G. (2007). Preeclampsia: at risk for remote cardiovascular disease. American Journal of the Medical Sciences, 334(4), 291–295. doi:10.1097/MAJ.0b013e3180a6f094.

    PubMed  Article  Google Scholar 

  22. 22.

    Mongraw-Chaffin, M. L., Cirillo, P. M., & Cohn, B. A. (2010). Preeclampsia and cardiovascular disease death: prospective evidence from the child health and development studies cohort. Hypertension, 56(1), 166–171. doi:10.1161/hypertensionaha.110.150078.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Bobak, M. (2000). Outdoor air pollution, low birth weight, and prematurity. Environmental Health Perspectives, 108(2), 173–176.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Ritz, B., Yu, F., Chapa, G., et al. (2000). Effect of air pollution on preterm birth among children born in Southern California between 1989 and 1993. Epidemiology, 11(5), 502–511.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Sagiv, S. K., Mendola, P., Loomis, D., et al. (2005). A time-series analysis of air pollution and preterm birth in Pennsylvania, 1997-2001. Environmental Health Perspectives, 113(5), 602–606.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Zhao, Q., Liang, Z., Tao, S., et al. (2011). Effects of air pollution on neonatal prematurity in Guangzhou of China: a time-series study. Environ Health, 10, 2. doi:10.1186/1476-069x-10-2.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Dejmek, J., Solansky, I., Benes, I., et al. (2000). The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environmental Health Perspectives, 108(12), 1159–1164.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Sram, R. J., Binkova, B., Rossner, P., et al. (1999). Adverse reproductive outcomes from exposure to environmental mutagens. Mutation Research, 428(1–2), 203–215.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Hansen, C., Neller, A., Williams, G., et al. (2007). Low levels of ambient air pollution during pregnancy and fetal growth among term neonates in Brisbane, Australia. Environmental Research, 103(3), 383–389. doi:10.1016/j.envres.2006.06.010.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Parker, J. D., Rich, D. Q., Glinianaia, S. V., et al. (2011). The international collaboration on air pollution and pregnancy outcomes: initial results. Environmental Health Perspectives, 119(7), 1023–1028. doi:10.1289/ehp.1002725.

    PubMed  Article  Google Scholar 

  31. 31.

    Ros, H. S., Cnattingius, S., & Lipworth, L. (1998). Comparison of risk factors for preeclampsia and gestational hypertension in a population-based cohort study. American Journal of Epidemiology, 147(11), 1062–1070.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Villar, J., Carroli, G., Wojdyla, D., et al. (2006). Preeclampsia, gestational hypertension and intrauterine growth restriction, related or independent conditions? American Journal of Obstetrics and Gynecology, 194(4), 921–931. doi:10.1016/j.ajog.2005.10.813.

    PubMed  Article  Google Scholar 

  33. 33.

    Kannan, S., Misra, D. P., Dvonch, J. T., et al. (2006). Exposures to airborne particulate matter and adverse perinatal outcomes: a biologically plausible mechanistic framework for exploring potential effect modification by nutrition. Environmental Health Perspectives, 114(11), 1636–1642.

    PubMed  CAS  Google Scholar 

  34. 34.

    Slama, R., Darrow, L., Parker, J., et al. (2008). Meeting report: atmospheric pollution and human reproduction. Environmental Health Perspectives, 116(6), 791–798. doi:10.1289/ehp.11074.

    PubMed  Article  Google Scholar 

  35. 35.

    Auchincloss, A. H. (2008). Associations between recent exposure to ambient fine particulate matter and blood pressure in the Multi-ethnic Study of Atherosclerosis (MESA). Environmental Health Perspectives, 116(4), 486–491. doi:10.1289/ehp.10899.

    PubMed  Google Scholar 

  36. 36.

    Zanobetti, A., Canner, M. J., Stone, P. H., et al. (2004). Ambient pollution and blood pressure in cardiac rehabilitation patients. Circulation, 110(15), 2184–2189. doi:10.1161/01.CIR.0000143831.33243.D8.

    PubMed  Article  Google Scholar 

  37. 37.

    Sergio Chiarelli P, Amador Pereira LA, Nascimento Saldiva PH, et al. (2011) The association between air pollution and blood pressure in traffic controllers in Santo Andre, Sao Paulo, Brazil. Environ Res doi:10.1016/j.envres.2011.04.007.

  38. 38.

    Chen, L., Bell, E. M., Caton, A. R., et al. (2010). Residential mobility during pregnancy and the potential for ambient air pollution exposure misclassification. Environmental Research, 110(2), 162–168. doi:10.1016/j.envres.2009.11.001.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pei-Chen Lee.

Appendix

Appendix

See Tables 5, 6, 7, 8, 9.

Table 5 Estimated spatial and temporal variograms for each pollutant
Table 6 Effect estimates (odds ratio, 95 % CI) for first trimester air pollutant exposures (per unit increasea) and preeclampsia, gestational hypertension, preterm delivery, and SGA
Table 7 Effect estimates (odds ratio, 95 % CI) for first trimester air pollutant exposures (per unit increasea) and preeclampsia, gestational hypertension, preterm delivery, and SGA stratified by maternal smoking during pregnancy
Table 8 Effect estimates (odds ratio, 95 % CI) for first trimester air pollutant exposures (per IQR) and preeclampsia, gestational hypertension, preterm delivery, and SGA stratified by racial group
Table 9 Effect estimates (odds ratio, 95 % CI) for first trimester air pollutant exposures (per IQR) and preeclampsia stratified by preterm status, and preterm delivery stratified by labor type

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, PC., Roberts, J.M., Catov, J.M. et al. First Trimester Exposure to Ambient Air Pollution, Pregnancy Complications and Adverse Birth Outcomes in Allegheny County, PA. Matern Child Health J 17, 545–555 (2013). https://doi.org/10.1007/s10995-012-1028-5

Download citation

Keywords

  • Air pollution
  • Particulate
  • Preeclampsia
  • Gestational hypertension
  • Preterm
  • Small for gestational age (SGA)