Maternal and Child Health Journal

, Volume 17, Issue 3, pp 501–504

Association of Head Circumference and Shoulder Dystocia in Macrosomic Neonates

Article

Abstract

To determine whether asymmetric macrosomia (disproportionately large body size in comparison to head circumference) could be demonstrated in a population of infants suffering shoulder dystocia during delivery relative to those that did not suffer from shoulder dystocia. A case–control study was conducted as a retrospective chart review over 3 years at a large maternity hospital in an urban setting. Among infants over 4,000 g, those that suffered from shoulder dystocia during delivery had a smaller mean head circumference than infants of a similar size that did not suffer from shoulder dystocia. A statistically significant difference was also present when cases of documented gestational diabetes were excluded. Asymmetric macrosomia is more likely to be present in a population of infants who suffered shoulder dystocia during delivery. This knowledge could be used in designing tools to predict which pregnancies are at highest risk for shoulder dystocia during delivery.

Keywords

Brachial plexus injury Shoulder dystocia Asymmetric macrosomia Gestational diabetes Head circumference 

References

  1. 1.
    Rosenberg, K., & Trevathan, W. (1995). Bipedalism and human birth: The obstetrical dilemma revisited. Evolutionary Anthropology: Issues, News, and Reviews, 4(5), 161–168.CrossRefGoogle Scholar
  2. 2.
    Nesbitt, T. S., Gilbert, W. M., & Herrchen, B. (1998). Shoulder dystocia and associated risk factors with macrosomic infants born in California. American Journal of Obstetrics and Gynecology, 179(2), 476–480.PubMedCrossRefGoogle Scholar
  3. 3.
    Bahar, A. M. (1996). Risk factors and fetal outcome in cases of shoulder dystocia compared with normal deliveries of a similar birthweight. British Journal of Obstetrics and Gynaecology, 103(9), 868–872.PubMedCrossRefGoogle Scholar
  4. 4.
    Deaver, J. E., & Cohen, W. R. (2009). An approach to the prediction of neonatal Erb palsy. Journal of Perinatal Medicine, 37(2), 150–155.PubMedCrossRefGoogle Scholar
  5. 5.
    Modanlou, H. D., Komatsu, G., Dorchester, W., Freeman, R. K., & Bosu, S. K. (1982). Large-for-gestational-age neonates: Anthropometric reasons for shoulder dystocia. Obstetrics and Gynecology, 60(4), 417–423.PubMedGoogle Scholar
  6. 6.
    McFarland, M. B., Trylovich, C. G., & Langer, O. (1998). Anthropometric differences in macrosomic infants of diabetic and nondiabetic mothers. Journal of Maternal-Fetal Medicine, 7(6), 292–295.PubMedCrossRefGoogle Scholar
  7. 7.
    Conway, D. L. (2002). Delivery of the macrosomic infant: Cesarean section versus vaginal delivery. Seminars in Perinatology, 26(3), 225–231.PubMedCrossRefGoogle Scholar
  8. 8.
    Salim, R., Hasanein, J., Nachum, Z., & Shalev, E. (2004). Anthropometric parameters in infants of gestational diabetic women with strict glycemic control. Obstetrics and Gynecology, 104(5 Pt 1), 1021–1024.PubMedCrossRefGoogle Scholar
  9. 9.
    HAPO Study Cooperative Research Group, Metzger, B. E., Lowe, L. P., Dyer, A. R., Trimble, E. R., Chaovarindr, U., et al. (2008). Hyperglycemia and adverse pregnancy outcomes. New England Journal of Medicine, 358(19), 1991–2002.PubMedCrossRefGoogle Scholar
  10. 10.
    Lerner, H. M., & Salamon, E. (2008). Permanent brachial plexus injury following vaginal delivery without physician traction or shoulder dystocia. American Journal of Obstetrics and Gynecology, 198(3), e7–e8.PubMedCrossRefGoogle Scholar
  11. 11.
    Allen, R. H., & Gurewitsch, E. D. (2005). Temporary Erb-Duchenne palsy without shoulder dystocia or traction to the fetal head. Obstetrics and Gynecology, 105(5 Pt 2), 1210–1212.PubMedCrossRefGoogle Scholar
  12. 12.
    Doumouchtsis, S. K., & Arulkumaran, S. (2009). Are all brachial plexus injuries caused by shoulder dystocia? Obstetrical & Gynecological Survey, 64(9), 615–623.CrossRefGoogle Scholar
  13. 13.
    Gonik, B., Walker, A., & Grimm, M. (2000). Mathematic modeling of forces associated with shoulder dystocia: A comparison of endogenous and exogenous sources. American Journal of Obstetrics and Gynecology, 182(3), 689–691.PubMedCrossRefGoogle Scholar
  14. 14.
    Gonik, B., Zhang, N., & Grimm, M. J. (2003). Prediction of brachial plexus stretching during shoulder dystocia using a computer simulation model. American Journal of Obstetrics and Gynecology, 189(4), 1168–1172.PubMedCrossRefGoogle Scholar
  15. 15.
    Gonik, B., Zhang, N., & Grimm, M. J. (2003). Defining forces that are associated with shoulder dystocia: The use of a mathematic dynamic computer model. American Journal of Obstetrics and Gynecology, 188(4), 1068–1072.PubMedCrossRefGoogle Scholar
  16. 16.
    Gherman, R. B., Ouzounian, J. G., & Goodwin, T. M. (1998). Obstetric maneuvers for shoulder dystocia and associated fetal morbidity. American Journal of Obstetrics and Gynecology, 178(6), 1126–1130.PubMedCrossRefGoogle Scholar
  17. 17.
    Christoffersson, M., Kannisto, P., Rydhstroem, H., Stale, H., & Walles, B. (2003). Shoulder dystocia and brachial plexus injury: A case-control study. Acta Obstetricia et Gynecologica Scandinavica, 82(2), 147–151.PubMedCrossRefGoogle Scholar
  18. 18.
    Cohen, B. F., Penning, S., Ansley, D., Porto, M., & Garite, T. (1999). The incidence and severity of shoulder dystocia correlates with a sonographic measurement of asymmetry in patients with diabetes. American Journal of Perinatology, 16(4), 197–201.PubMedCrossRefGoogle Scholar
  19. 19.
    Miller, R. S., Devine, P. C., & Johnson, E. B. (2007). Sonographic fetal asymmetry predicts shoulder dystocia. Journal of Ultrasound in Medicine, 26(11), 1523–1528.PubMedGoogle Scholar
  20. 20.
    Rajan, P. V., Chung, J. H., Porto, H., & Wing, D. A. (2009). Correlation of increased fetal asymmetry with shoulder dystocia in the nondiabetic woman with suspected macrosomia. Journal of Reproductive Medicine, 54(8), 478–482.PubMedGoogle Scholar
  21. 21.
    Cohen, B., Penning, S., Major, C., Ansley, D., Porto, M., & Garite, T. (1996). Sonographic prediction of shoulder dystocia in infants of diabetic mothers. Obstetrics and Gynecology, 88(1), 10–13.PubMedCrossRefGoogle Scholar
  22. 22.
    Gerber, S., Goldsmith, S., Sharkey, J., & Grobman, W. (2008). 236: Ultrasonographic prediction of shoulder dystocia risk. American Journal of Obstetrics and Gynecology, 199(6), s76.CrossRefGoogle Scholar
  23. 23.
    Conway, D. L., & Langer, O. (1998). Elective delivery of infants with macrosomia in diabetic women: Reduced shoulder dystocia versus increased cesarean deliveries. American Journal of Obstetrics and Gynecology, 178(5), 922–925.PubMedCrossRefGoogle Scholar
  24. 24.
    Althabe, F., & Belizan, J. M. (2006). Caesarian section: The paradox. Lancet, 368(9546), 1472–1473.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Children’s Hospital ColoradoUniversity of Colorado Denver, Office of Graduate Medical EducationAuroraUSA
  2. 2.Alpert Medical School of Brown UniversityProvidenceUSA
  3. 3.Division of Child NeurologyAlpert Medical School of Brown UniversityProvidenceUSA

Personalised recommendations