Maternal and Child Health Journal

, Volume 16, Issue 5, pp 1015–1020 | Cite as

Age of Achievement of Gross Motor Milestones in Infancy and Adiposity at Age 3 Years

  • Sara E. Benjamin NeelonEmail author
  • Emily Oken
  • Elsie M. Taveras
  • Sheryl L. Rifas-Shiman
  • Matthew W. Gillman


Early life physical activity may help prevent obesity but is difficult to measure. The purpose of this study was to examine associations of age of achievement of gross motor milestones in infancy with adiposity at age 3 years. Seven forty one mother/infant dyads participated in a longitudinal study in Massachusetts. Exposures were age of attainment of 4 gross motor milestones—rolling over, sitting up, crawling, and walking. Outcomes were 3-year sum of subscapular and triceps skinfold thickness (SS + TR) for overall adiposity, their ratio (SS:TR) for central adiposity, and body mass index (BMI) z-score. We used linear regression models adjusted for confounders to examine motor milestone achievement and later adiposity. Rolling over (0.04, 95% CI: 0.008, 0.07) and sitting up (0.02, 95% CI: 0.001, 0.05) at ≥6 months were associated with increased SS:TR compared with attainment before 6 months. Walking at ≥15 months was associated with 0.98 mm higher SS + TR (95% CI: 0.05, 1.91) compared with walking before 12 months. Age at crawling was not associated with the outcomes. None of the milestones were associated with BMI z-score. Age of motor milestone achievement was only a modest predictor of adiposity. Later rolling over and sitting up were associated with greater central adiposity, and later age at walking was associated with greater overall adiposity at age 3 years. Although we controlled for birth weight and 6-month weight-for-length in our models, more detailed assessment of early adiposity prior to achievement of motor milestones is needed to help determine causality.


Infant Motor development Obesity Physical activity 


  1. 1.
    WHO. (2006). Motor development study: Windows of achievement for six gross motor development milestones. Acta Paediatric Supplement, 450, 86–95.Google Scholar
  2. 2.
    Black, M. M., Sazawal, S., Black, R. E., Khosla, S., Kumar, J., & Menon, V. (2004). Cognitive and motor development among small-for-gestational-age infants: Impact of zinc supplementation, birth weight, and caregiving practices. Pediatrics, 113(5), 1297–1305.PubMedCrossRefGoogle Scholar
  3. 3.
    Spittle, A. J., Doyle, L. W., & Boyd, R. N. (2008). A systematic review of the clinimetric properties of neuromotor assessments for preterm infants during the first year of life. Development Medicine and Child Neurolougy, 50(4), 254–266.CrossRefGoogle Scholar
  4. 4.
    Festen, D. A., Wevers, M., de Weerd, A. W., et al. (2007). Psychomotor development in infants with Prader-Willi syndrome and associations with sleep-related breathing disorders. Journal of Pediatric, 62(2), 221–224.Google Scholar
  5. 5.
    Kariger, P. K., Stoltzfus, R. J., Olney, D., et al. (2005). Iron deficiency and physical growth predict attainment of walking but not crawling in poorly nourished Zanzibari infants. Journal of Nutrition, 135(4), 814–819.PubMedGoogle Scholar
  6. 6.
    Siegel, E. H., Stoltzfus, R. J., Kariger, P. K., et al. (2005). Growth indices, anemia, and diet independently predict motor milestone acquisition of infants in south central Nepal. Journal of Nutrition, 135(12), 2840–2844.PubMedGoogle Scholar
  7. 7.
    Brouwer, S. I., van Beijsterveldt, T. C., Bartels, M., Hudziak, J. J., & Boomsma, D. I. (2006). Influences on achieving motor milestones: A twin-singleton study. Twin Research and Human Genetics, 9(3), 424–430.PubMedGoogle Scholar
  8. 8.
    Langendonk, J. M., van Beijsterveldt, C. E., Brouwer, S. I., Stroet, T., Hudziak, J. J., & Boomsma, D. I. (2007). Assessment of motor milestones in twins. Twin Research and Human Genetics, 10(6), 835–839.PubMedCrossRefGoogle Scholar
  9. 9.
    Yokoyama, W. S. Y., Sugimoto, M., Saito, M., Matsubara, M., & Sono, J. (2007). Comparison of motor development between twins and singletons in Japan: A population-based study. Twin Research and Human Genetics, 10(2), 379–384.PubMedCrossRefGoogle Scholar
  10. 10.
    Dewey, K. G., Cohen, R. J., Brown, K. H., & Rivera, L. L. (2001). Effects of exclusive breastfeeding for four versus six months on maternal nutritional status and infant motor development: Results of two randomized trials in Honduras. Journal of Nutrition, 131(2), 262–267.PubMedGoogle Scholar
  11. 11.
    Kuklina, E. V., Ramakrishnan, U., Stein, A. D., Barnhart, H. H., & Martorell, R. (2004). Growth and diet quality are associated with the attainment of walking in rural Guatemalan infants. Journal of Nutrition, 134(12), 3296–3300.PubMedGoogle Scholar
  12. 12.
    Shafir, T., Angulo-Barroso, R., Jing, Y., Angelilli, M. L., Jacobson, S. W., & Lozoff, B. (2008). Iron deficiency and infant motor development. Early Human Development, 84(7), 479–485.PubMedCrossRefGoogle Scholar
  13. 13.
    Majnemer, A., & Barr, R. G. (2006). Association between sleep position and early motor development. Journal of Pediatric, 149(5), 623–629.CrossRefGoogle Scholar
  14. 14.
    Majnemer A., & Barr R. G. (2005). Influence of supine sleep positioning on early motor milestone acquisition. Development Medicine and Child Neurolougy 47(6), 370–376; discussion 364.Google Scholar
  15. 15.
    Salls, J. S., Silverman, L. N., & Gatty, C. M. (2002). The relationship of infant sleep and play positioning to motor milestone achievement. American Journal of Occupational Therapy, 56(5), 577–580.PubMedCrossRefGoogle Scholar
  16. 16.
    Onis, M. (2006). Assessment of sex differences and heterogeneity in motor milestone attainment among populations in the WHO multicentre growth reference study. Acta Paediatrica Supplement, 450, 66–75.Google Scholar
  17. 17.
    Kolobe, T. H. (2004). Childrearing practices and developmental expectations for Mexican-American mothers and the developmental status of their infants. Physical Therapy, 84(5), 439–453.PubMedGoogle Scholar
  18. 18.
    Malina, R. M. (2004). Motor development during infancy and early childhood: Overview and suggested directions for research. International Journal of Sport and Health Science, 2, 50–66.CrossRefGoogle Scholar
  19. 19.
    Taanila, A., Murray, G. K., Jokelainen, J., Isohanni, M., & Rantakallio, P. (2005). Infant developmental milestones: a 31-year follow-up. Developmental Medicine and Child Neurology, 47(9), 581–586.PubMedGoogle Scholar
  20. 20.
    Murray, G. K., Veijola, J., Moilanen, K., et al. (2006). Infant motor development is associated with adult cognitive categorisation in a longitudinal birth cohort study. Journal of Child Psychology and Psychiatry, 47(1), 25–29.PubMedCrossRefGoogle Scholar
  21. 21.
    Murray, G. K., Jones, P. B., Kuh, D., & Richards, M. (2007). Infant developmental milestones and subsequent cognitive function. Annals Neurology, 62(2), 128–136.CrossRefGoogle Scholar
  22. 22.
    Reilly, J. J., Armstrong, J., Dorosty, A. R., et al. (2005). Early life risk factors for obesity in childhood: Cohort study. BMJ, 330(7504), 1357.PubMedCrossRefGoogle Scholar
  23. 23.
    Monteiro, P. O., & Victora, C. G. (2005). Rapid growth in infancy and childhood and obesity in later life–a systematic review. Obesity Reviews, 6(2), 143–154.PubMedCrossRefGoogle Scholar
  24. 24.
    Taveras, E. M., Rifas-Shiman, S. L., Belfort, M. B., Kleinman, K. P., Oken, E., & Gillman, M. W. (2009). Weight status in the first 6 months of life and obesity at 3 years of age. Pediatrics, 123(4), 1177–1183.PubMedCrossRefGoogle Scholar
  25. 25.
    Taveras, E. M., Rifas-Shiman, S. L., Camargo, C. A., Jr., et al. (2008). Higher adiposity in infancy associated with recurrent wheeze in a prospective cohort of children. Journal of Allergy and Clinical Immunology, 121(5), 1161 e1163–1166 e1163.CrossRefGoogle Scholar
  26. 26.
    Roberts, S. B., Savage, J., Coward, W. A., Chew, B., & Lucas, A. (1988). Energy expenditure and intake in infants born to lean and overweight mothers. New England Journal of Medicine, 318(8), 461–466.PubMedCrossRefGoogle Scholar
  27. 27.
    Stunkard, A. J., Berkowitz, R. I., Stallings, V. A., & Schoeller, D. A. (1999). Energy intake, not energy output, is a determinant of body size in infants. American Journal of Clinical Nutrition, 69(3), 524–530.PubMedGoogle Scholar
  28. 28.
    Davies, P. S., Day, J. M., & Lucas, A. (1991). Energy expenditure in early infancy and later body fatness. International Journal of Obesity, 15(11), 727–731.PubMedGoogle Scholar
  29. 29.
    Wells, J. C., Stanley, M., Laidlaw, A. S., Day, J. M., & Davies, P. S. (1996). The relationship between components of infant energy expenditure and childhood body fatness. International Journal of Obesity Related and Metabolic Disorders, 20(9), 848–853.Google Scholar
  30. 30.
    Pica, R. (2003). Your active child: How to boost physical, emotional, and cognitive development through age-apppropriate activity. New York: McGraw-Hill Companies, Inc.Google Scholar
  31. 31.
    Slining, M., Adair, L. S., Goldman, B. D., Borja, J. B., & Bentley, M. (2010). Infant overweight is associated with delayed motor development. Journal of Pediatric, 157(1), 20 e21–25 e21.CrossRefGoogle Scholar
  32. 32.
    Li, R., O’Connor, L., Buckley, D., & Specker, B. (1995). Relation of activity levels to body fat in infants 6 to 12 months of age. Journal of Pediatric, 126(3), 353–357.CrossRefGoogle Scholar
  33. 33.
    Wells, J. C., Cole, T. J., & Davies, P. S. (1996). Total energy expenditure and body composition in early infancy. Archives of Disease in Childhood, 75(5), 423–426.PubMedCrossRefGoogle Scholar
  34. 34.
    Frey, G. C., & Chow, B. (2006). Relationship between BMI, physical fitness, and motor skills in youth with mild intellectual disabilities. International Journal of Obesity (London), 30(5), 861–867.CrossRefGoogle Scholar
  35. 35.
    Graf, C., Koch, B., Kretschmann-Kandel, E., et al. (2004). Correlation between BMI, leisure habits and motor abilities in childhood (CHILT-project). International Journal of Obesity Related Metabolic Disorders, 28(1), 22–26.CrossRefGoogle Scholar
  36. 36.
    Cawley, J., & Spiess, C. K. (2008). Obesity and skill attainment in early childhood. Economics and Human Biology, 6(3), 388–397.PubMedCrossRefGoogle Scholar
  37. 37.
    Mond, J. M., Stich, H., Hay, P. J., Kraemer, A., & Baune, B. T. (2007). Associations between obesity and developmental functioning in pre-school children: a population-based study. International Journal of Obesity (London), 31(7), 1068–1073.CrossRefGoogle Scholar
  38. 38.
    Okely, A. D., Booth, M. L., & Chey, T. (2004). Relationships between body composition and fundamental movement skills among children and adolescents. Research Quaterly for Exercise and Sport, 75(3), 238–247.Google Scholar
  39. 39.
    Jaffe, M., & Kosakov, C. (1982). The motor development of fat babies. Clinical Pediatrics, 21(10), 619–621.PubMedCrossRefGoogle Scholar
  40. 40.
    De Toia, D., Klein, D., Weber, S., Wessely, N., Koch, B., Tokarski, W., et al. (2009). Relationship between anthropometry and motor abilities at pre-school age. Obesity Facts, 2(4), 221–225.PubMedCrossRefGoogle Scholar
  41. 41.
    Gillman, M. W., Rich-Edwards, J. W., Rifas-Shiman, S. L., Lieberman, E. S., Kleinman, K. P., & Lipshultz, S. E. (2004). Maternal age and other predictors of newborn blood pressure. Journal of Pediatric, 144(2), 240–245.CrossRefGoogle Scholar
  42. 42.
    Capute, A. J., Shapiro, B. K., Palmer, F. B., Ross, A., & Wachtel, R. C. (1985). Normal gross motor development: the influences of race, sex and socio-economic status. Developmental Medicine and Child Neurology, 27(5), 635–643.PubMedCrossRefGoogle Scholar
  43. 43.
    Oken, E., Osterdal, M. L., Gillman, M. W., et al. (2008). Associations of maternal fish intake during pregnancy and breastfeeding duration with attainment of developmental milestones in early childhood: A study from the Danish National Birth Cohort. American Journal of Clinical Nutrition, 88(3), 789–796.PubMedGoogle Scholar
  44. 44.
    Zhu, J. L., Basso, O., Obel, C., Hvidtjorn, D., & Olsen, J. (2009). Infertility, infertility treatment and psychomotor development: The Danish National birth cohort. Paediatric and Perinatal Epidemiology, 23(2), 98–106.PubMedCrossRefGoogle Scholar
  45. 45.
    National Center for Health Statistics CDC Growth Charts, USA. Accessed July 20, 2004.
  46. 46.
    Shorr, I. (1986). How to weigh and measure children. New York: United Nations.Google Scholar
  47. 47.
    Oken, E., Kleinman, K. P., Rich-Edwards, J., & Gillman, M. W. (2003). A nearly continuous measure of birth weight for gestational age using a United States national reference. BMC Pediatric, 3, 6.CrossRefGoogle Scholar
  48. 48.
    Ogden, C. L., Carroll, M. D., Curtin, L. R., Lamb, M. M., & Flegal, K. M. (2010). Prevalence of high body mass Index in US children and adolescents, 2007–2008. JAMA, 303(3), 242–249.PubMedCrossRefGoogle Scholar
  49. 49.
    Kim, J., Peterson, K. E., Scanlon, K. S., et al. (2006). Trends in overweight from 1980 through 2001 among Preschool-Aged children enrolled in a health maintenance organization. Obesity, 14(7), 1107–1112.PubMedCrossRefGoogle Scholar
  50. 50.
    Gillman, M. W. (2010). Early infancy as a critical period for development of obesity and related conditions. Nestle Nutrition Workshop Series. Pediatric Program, 65, 13–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Rose, H. E., & Mayer, J. (1968). Activity, calorie intake, fat storage, and the energy balance of infants. Pediatrics, 41(1), 18–29.PubMedGoogle Scholar
  52. 52.
    Rueda-Williamson, R., & Rose, H. (1962). Growth and nutrition of infants. Pediatrics, 30, 639–653.PubMedGoogle Scholar
  53. 53.
    Worobey, J., Vetrini, N. R., & Rozo, E. M. (2009). Mechanical, measurement of infant activity: A cautionary note. Infant Behaviour and Development, 32(2), 167–172.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sara E. Benjamin Neelon
    • 1
    Email author
  • Emily Oken
    • 2
  • Elsie M. Taveras
    • 2
  • Sheryl L. Rifas-Shiman
    • 2
  • Matthew W. Gillman
    • 2
    • 3
  1. 1.Department of Community and Family MedicineDuke University Medical Center and Duke Global Health InstituteDurhamUSA
  2. 2.Obesity Prevention Program, Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health CareBostonUSA
  3. 3.Department of NutritionHarvard School of Public HealthBostonUSA

Personalised recommendations