Machine Learning

, Volume 84, Issue 3, pp 335–340 | Cite as

Machine learning in space: extending our reach

  • Amy McGovern
  • Kiri L. WagstaffEmail author


We introduce the challenge of using machine learning effectively in space applications and motivate the domain for future researchers. Machine learning can be used to enable greater autonomy to improve the duration, reliability, cost-effectiveness, and science return of space missions. In addition to the challenges provided by the nature of space itself, the requirements of a space mission severely limit the use of many current machine learning approaches, and we encourage researchers to explore new ways to address these challenges.


Space missions Machine learning applications Autonomy 


  1. Bajracharya, M., Maimone, M. W., & Helmick, D. (2008). Autonomy for Mars rovers: Past, present, and future. IEEE Computer, 41, 44–50. Google Scholar
  2. Bluethmann, W., Ambrose, R., Diftlet, M., Huber, E., Fagg, A. H., Rosenstein, M., Platt, R., Grupen, R., Breazeal, C., Brooks, A., Lockerd, A., Peters, R. A., Jenkins, O. C., Mataric, M., & Bugajska, M. (2004). Building an autonomous humanoid tool user. In Proceedings of the IEEE-RAS international conference on humanoid robots (pp. 402–421). Google Scholar
  3. Castaño, R., Mazzoni, D., Tang, N., Doggett, T., Chien, S., Greeley, R., Cichy, B., & Davies, A. (2005). Learning classifiers for science event detection in remote sensing imagery. In Proceedings of the 8th international symposium on artificial intelligence, robotics, and automation in space. Google Scholar
  4. Castaño, R., Wagstaff, K. L., Chien, S., Stough, T. M., & Tang, B. (2007). On-board analysis of uncalibrated data for a spacecraft at Mars. In Proceedings of the thirteenth international conference on knowledge discovery and data mining (KDD) (pp. 922–930). Google Scholar
  5. Castaño, A., Fukunaga, A., Biesiadecki, J., Neakrase, L., Whelley, P., Greeley, R., Lemmon, M., Castaño, R., & Chien, S. (2008). Automatic detection of dust devils and clouds on Mars. Machine Vision and Applications, 19, 467–482. CrossRefGoogle Scholar
  6. Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., Castaño, R., Davies, A., Mandl, D., Frye, S., Trout, B., Shulman, S., & Boyer, D. (2005). Using autonomy flight software to improve science return on Earth Observing One. Journal of Aerospace Computing, Information, and Communication, 2, 196–216. CrossRefGoogle Scholar
  7. Estlin, T., Castaño, R., Bornstein, B., Gaines, D., Anderson, R. C., de Granville, C., Thompson, D., Burl, M., Judd, M., & Chien, S. (2009). Automated targeting for the MER rovers. In Proceedings of the third IEEE international conference on space mission challenges for information technology. Google Scholar
  8. Gieseke, F., Moruz, G., & Vahrenhold, J. (2010). Resilient k-d trees: K-means in space revisited. In Proceedings of the IEEE international conference on data mining (pp. 815–820). CrossRefGoogle Scholar
  9. Kean, S. (2010). Making smarter, savvier robots. Science, 329, 508–509. CrossRefGoogle Scholar
  10. Maimone, M., Johnson, A., Cheng, Y., Wilson, R., & Matthies, L. (2004). Autonomous navigation results from the Mars Exploration Rover (MER) mission. In Proceedings of the 9th international symposium on experimental robotics (pp. 3–13). Google Scholar
  11. Rabideau, G., Tran, D., Chien, S., Cichy, B., Sherwood, R., Mandl, D., Frye, S., Shulman, S., Szwaxzkowski, J., Boyer, D., & Van Gassbeck, J. (2006). Mission operations of Earth Observing-1 with onboard autonomy. In Proceedings of the IEEE international conference on space mission challenges for information technology. Google Scholar
  12. Rhea, J. (2002). BAE Systems moves into third generation rad-hard processors. Military & Aerospace Electronics, 13. Google Scholar
  13. Wagstaff, K. L., & Bornstein, B. (2009a). How much memory radiation protection do onboard machine learning algorithms require. In Proceedings of the IJCAI-09/SMC-IT-09/IWPSS-09 workshop on artificial intelligence in space. Google Scholar
  14. Wagstaff, K. L., & Bornstein, B. (2009b). K-means in space: A radiation sensitivity evaluation. In Proceedings of the twenty-sixth international conference on machine learning (ICML) (pp. 1097–1104). Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of OklahomaNormanUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations