Machine Learning

, Volume 82, Issue 3, pp 275–279 | Cite as

The changing science of machine learning

Editorial

References

  1. DeJong, G., & Mooney, R. (1986). Explanation-based learning: An alternative view. Machine Learning, 1, 145–176. Google Scholar
  2. Kibler, D., & Langley, P. (1988). Machine learning as an experimental science. In Proceedings of the third European working session on learning (pp. 81–92). Glasgow: Pittman. Google Scholar
  3. Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in Soar: The anatomy of a general learning mechanism. Machine Learning, 1, 11–46. Google Scholar
  4. Langley, P. (1986). Human and machine learning. Machine Learning, 1, 243–248. Google Scholar
  5. Langley, P. (1987). Research papers in machine learning. Machine Learning, 2, 195–198. Google Scholar
  6. Langley, P. (1989). Toward a unified science of machine learning. Machine Learning, 3, 253–259. Google Scholar
  7. Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.) (1983). Machine learning: An artificial intelligence approach. San Mateo: Morgan Kaufmann. Google Scholar
  8. Richards, B. L., & Mooney, R. J. (1995). Automated refinement of first-order horn-clause domain theories. Machine Learning, 19, 95–131. Google Scholar
  9. Simon, H. A. (1983). Why should machines learn? In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach. San Mateo: Morgan Kaufmann. Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Computer Science and EngineeringArizona State UniversityTempeUSA

Personalised recommendations