Machine Learning

, Volume 82, Issue 1, pp 1–42 | Cite as

Editorial survey: swarm intelligence for data mining

Article

Abstract

This paper surveys the intersection of two fascinating and increasingly popular domains: swarm intelligence and data mining. Whereas data mining has been a popular academic topic for decades, swarm intelligence is a relatively new subfield of artificial intelligence which studies the emergent collective intelligence of groups of simple agents. It is based on social behavior that can be observed in nature, such as ant colonies, flocks of birds, fish schools and bee hives, where a number of individuals with limited capabilities are able to come to intelligent solutions for complex problems. In recent years the swarm intelligence paradigm has received widespread attention in research, mainly as Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO). These are also the most popular swarm intelligence metaheuristics for data mining. In addition to an overview of these nature inspired computing methodologies, we discuss popular data mining techniques based on these principles and schematically list the main differences in our literature tables. Further, we provide a unifying framework that categorizes the swarm intelligence based data mining algorithms into two approaches: effective search and data organizing. Finally, we list interesting issues for future research, hereby identifying methodological gaps in current research as well as mapping opportunities provided by swarm intelligence to current challenges within data mining research.

Keywords

Swarm intelligence Ant colony optimization Particle swarm optimization Data mining 

References

  1. Agrawal, R., & Srikant, R. (2000). Privacy-preserving data mining. SIGMOD Records, 29(2), 439–450. CrossRefGoogle Scholar
  2. Alatas, B., & Akin, E. (2009). Multi-objective rule mining using a chaotic particle swarm optimization algorithm. Knowledge-Based Systems, 22(6), 455–460. CrossRefGoogle Scholar
  3. Alatas, B., Akin, E., & Ozer, A. B. (2009). Chaos embedded particle swarm optimization algorithms. Chaos, Solitons & Fractals, 40(4), 1715–1734. MATHCrossRefMathSciNetGoogle Scholar
  4. Baud, N., Frachot, A., & Roncalli, T. (2002). Internal data, external data and consortium data for operational risk measurement: how to pool data properly? Working paper, Credit Lyonnais. Google Scholar
  5. Berkhin, P. (2002). Survey of clustering data mining techniques. Tech. rep., Accrue Software Inc. Google Scholar
  6. Bishop, C. (1996). Neural networks for pattern recognition. Oxford: Oxford University Press. MATHGoogle Scholar
  7. Blum, C. (2005a). Beam-ACO—hybridizing ant colony optimization with beam search: an application to open shop scheduling. Computers & Operations Research, 32(6), 1565–1591. CrossRefGoogle Scholar
  8. Blum, C. (2005b). Beam-ACO: hybridizing ant colony optimization with beam search: an application to open shop scheduling. Computers and Operations Research, 32(6), 1565–1591. CrossRefGoogle Scholar
  9. Bonabeau, E., Dorigo, M., & Tharaulaz, G. (1999). Swarm intelligence: from natural to artificial systems. Oxford: Oxford University Press. MATHGoogle Scholar
  10. Bullnheimer, B., Hartl, R., & Strauss, C. (1999). Applying the ant system to the vehicle routing problem. In: Voss, S., Martello, S., Osman, I., Roucairol, C. (Eds.), Meta-heuristics: advances and trends in local search paradigms for optimization (pp. 285–296). Google Scholar
  11. Buntine, W. (1991). Theory refinement on Bayesian networks. In Proceedings of the 17th conference on uncertainty in artificial intelligence (pp. 52–60). San Mateo: Morgan Kaufmann. Google Scholar
  12. de Campos, L., Fernández-Luna, J., Gámez, J., & Puerta, J. (2002). Ant colony optimization for learning Bayesian networks. International Journal of Approximate Reasoning, 31(3), 291–311. MATHCrossRefMathSciNetGoogle Scholar
  13. Caro, G. D., & Dorigo, M. (1998). Antnet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research, 9, 317–365. MATHGoogle Scholar
  14. Chapelle, O., Schölkopf, B., & Zien, A. (2006). Semi-supervised learning. Cambridge: MIT Press. Google Scholar
  15. Chickering, D. (2002). Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research, 2, 445–498. MATHCrossRefMathSciNetGoogle Scholar
  16. Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73. CrossRefGoogle Scholar
  17. Coello Coello, C., Satchidananda, S. D., & Ghosh, S. (2009). Swarm intelligence for multi-objective problems in data mining. Berlin: Springer. CrossRefGoogle Scholar
  18. Colorni, A., Dorigo, M., Maniezzo, V., & Trubian, M. (1994). Ant system for job-shop scheduling. Journal of Operations Research, Statistics and Computer Science, 34(1), 39–53. MATHGoogle Scholar
  19. Cordon, O., de Viana, I. F., & Herrera, F. (2002). Analysis of the best-worst ant system and its variants on the QAP. In M. Dorigo, G. Di Caro, & M. Sampels (Eds.), Lecture notes in computer science : Vol. 2463. Proceedings of the third international workshop on ant algorithms (ANTS’2002) (pp. 228–234). Brussels: Springer. Google Scholar
  20. Cotta, C., & Muruzábal, J. (2004). On the learning of Bayesian network graph structures via evolutionary programming. In: Lucas, P. (Ed.), Proceedings of the second workshop on probabilistic graphical models, Leiden, The Netherlands (pp. 65–72). Google Scholar
  21. Daly, R., & Shen, Q. (2009). Learning Bayesian network equivalence classes with ant colony optimization. Journal of Artificial Intelligence Research, 35(1), 391–447. MATHMathSciNetGoogle Scholar
  22. De Falco, I., Della Cioppa, A., & Tarantino, E. (2007). Facing classification problems with particle swarm optimization. Applied Soft Computing, 7(3), 652–658. CrossRefGoogle Scholar
  23. Deneubourg, J. L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., & Chrétien, L. (1990). The dynamics of collective sorting robot-like ants and ant-like robots. In Proceedings of the first international conference on simulation of adaptive behavior on from animals to animats (pp. 356–363). Cambridge: MIT Press. Google Scholar
  24. Domeniconi, C., Gunopulos, D., Ma, S., Yan, B., Al-Razgan, M., & Papadopoulos, D. (2007). Locally adaptive metrics for clustering high dimensional data. Data Mining and Knowledge Discovery, 14(1), 63–97. CrossRefMathSciNetGoogle Scholar
  25. Dorigo, M. (2007). Editorial. Swarm Intelligence, 1(1), 1–2. CrossRefMathSciNetGoogle Scholar
  26. Dorigo, M. (2009). Swarm-bots and swarmanoid: Two experiments in embodied swarm intelligence. In Web intelligence (pp. 2–3). New York: IEEE. Google Scholar
  27. Dorigo, M., & Gambardella, L. (1997). Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66. CrossRefGoogle Scholar
  28. Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press. MATHCrossRefGoogle Scholar
  29. Dorigo, M., & Stützle, T. (2009). Ant colony optimization: overview and recent advances. Tech. rep. TR/IRIDIA/2009-013, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium. Google Scholar
  30. Dorigo, M., Maniezzo, V., & Colorni, A. (1991). Positive feedback as a search strategy. Tech. rep. 91016, Dipartimento di Elettronica e Informatica, Politecnico di Milano, IT. Google Scholar
  31. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant System: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 26(1), 29–41. CrossRefGoogle Scholar
  32. Dorigo, M., Birattari, M., Blum, C., Gambardella, L. M., Mondada, F., & Stützle, T. (Eds.) (2004). Lecture notes in computer science : Vol. 3172. Ant colony optimization and swarm intelligence, Proceedings, 4th international workshop, ANTS 2004, Brussels, Belgium, September 5–8, 2004. Berlin: Springer. Google Scholar
  33. Freitas, A., & Timmis, J. (2007). Revisiting the foundations of artificial immune systems for data mining. IEEE Transactions on Evolutionary Computation, 11(4), 521–540. CrossRefGoogle Scholar
  34. Freitas, A. A. (2003). A survey of evolutionary algorithms for data mining and knowledge discovery. In Advances in evolutionary computing: theory and applications (pp. 819–845). New York: Springer. Google Scholar
  35. Fürnkranz, J. (1999). Separate-and-conquer rule learning. Artificial Intelligence Review, 13, 3–54. MATHCrossRefGoogle Scholar
  36. Galea, M., & Shen, Q. (2006). Simultaneous ant colony optimization algorithms for learning linguistic fuzzy rules. In Swarm intelligence in data mining (pp. 75–99). Google Scholar
  37. Gambardella, L. M., & Dorigo, M. (1995). Ant-Q: a reinforcement learning approach to the traveling salesman problem. In A. Prieditis & S. Russell (Eds.), Proceedings of the twelfth international conference on machine learning (pp. 252–260). Morgan Kaufmann: Palo Alto. Google Scholar
  38. Giraldo, L. F., Lozano, F., & Quijano, N. (2010). Foraging theory for dimensionality reduction of clustered data. Machine Learning. Google Scholar
  39. Guntsch, M., & Middendorf, M. (2002). A population based approach for ACO. In Proceedings of the applications of evolutionary computing on EvoWorkshops 2002 (pp. 72–81). London: Springer. CrossRefGoogle Scholar
  40. Handl, J., & Meyer, B. (2002). Improved ant-based clustering and sorting in a document retrieval interface. In G. Goos, J. Hartmanis, & Jv. Leeuwen (Eds.), Lecture notes in computer science : Vol. 2439. Proceedings of the 7th international conference on parallel problem solving from nature PPSN VII (pp. 913–923). Berlin: Springer. CrossRefGoogle Scholar
  41. Handl, J., Knowles, J. D., & Dorigo, M. (2003). On the performance of ant-based clustering. In Design and application of hybrid intelligent systems (pp. 204–213). Amsterdam: IOS Press. Google Scholar
  42. Handl, J., Knowles, J., & Dorigo, M. (2006). Ant-based clustering and topographic mapping. Artificial Life, 12(1), 35–61. CrossRefGoogle Scholar
  43. He, S., Wu, Q., & Saunders, J. (2009). Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Transactions on Evolutionary Computation, 13(5), 973–990. CrossRefGoogle Scholar
  44. Hettich, S., & Bay, S. D. (1996). The uci kdd archive. http://kdd.ics.uci.edu.
  45. Hill, S., Provost, F., & Volinsky, C. (2006). Network-based marketing: identifying likely adopters via consumer networks. Statistical Science, 22, 256–276. CrossRefMathSciNetGoogle Scholar
  46. Hiroyasu, T., Miki, M., Ono, Y., & Minami, Y. (2000). Ant colony for continuous functions. Tech. rep., The Science and Engineering Doshisha University. Google Scholar
  47. Holden, N., & Freitas, A. (2005). A hybrid particle swarm/ant colony algorithm for the classification of hierarchical biological data. In Swarm intelligence symposium, 2005, SIS 2005, Proceedings 2005 (pp. 100–107). New York: IEEE. CrossRefGoogle Scholar
  48. Holden, N., & Freitas, A. (2008). A hybrid PSO/ACO algorithm for discovering classification rules in data mining. Journal of Artificial Evolution and Applications, 2008, 11 pages. doi:10.1155/2008/316145 CrossRefGoogle Scholar
  49. Holden, N., & Freitas, A. (2009). Hierarchical classification of protein function with ensembles of rules and particle swarm optimisation. Soft Computing, 13(3), 259–272. CrossRefGoogle Scholar
  50. Holden, N. P., & Freitas, A. A. (2007). A hybrid PSO/ACO algorithm for classification. In Proceedings of the GECCO-2007 workshop on particle swarms: the second decade (pp. 2745–2750). New York: ACM. Google Scholar
  51. Janson, S., & Middendorf, M. (2005). A hierarchical particle swarm optimizer and its adaptive variant. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 35(6), 1272–1282. CrossRefGoogle Scholar
  52. Janssen, F., & Fürnkranz, J. (2010). On the quest for optimal rule learning heuristics. Machine Learning, 78(3), 343–379. CrossRefGoogle Scholar
  53. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In International conference on neural networks (pp 1942–1948). Google Scholar
  54. Kennedy, J., & Eberhart, R. (1997). A discrete binary version of the particle swarm algorithm. In IEEE international conference on computational cybernetics and simulation (Vol. 5, pp. 4104–4108). Google Scholar
  55. King, B. (1967). Step-wise clustering procedures. Journal of the American Statistical Association, 69, 86–101. CrossRefGoogle Scholar
  56. Kohonen, T. (2001). Springer series in information sciences: Self-organizing maps, 3rd edn. Berlin: Springer. MATHGoogle Scholar
  57. Kuntz, P., Layzell, P., & Snyers, D. (1997). A colony of ant-like agents for partitioning in VLSI technology. In Proceedings of the 4th international conference on artificial life (ECAL97). Cambridge: MIT Press. Google Scholar
  58. Lawler, E. L., Lenstra, J. K., Kan, A. H. G. R., & Shmoys, D. B. (1985). The Travelling salesman problem. Chichester: Wiley. Google Scholar
  59. Lee, W., Stolfo, S., Chan, P., Eskin, E., Fan, W., Miller, M., Hershkop, S., & Zhang, J. (2001). Real time data mining-based intrusion detection. In: DARPA information survivability conference & exposition II, 2001, DISCEX’01, Proceedings (Vol. 1, pp. 89–100). Google Scholar
  60. Li, Q., Shi, Z., Shi, J., & Shi, Z. (2005). Swarm intelligence clustering algorithm based on attractor. In L. Wang, K. Chen, & Y. S. Ong (Eds.), Lecture notes in computer science : Vol. 3612. ICNC (3) (pp. 496–504). Berlin: Springer. Google Scholar
  61. Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10(3), 281–295. CrossRefGoogle Scholar
  62. Liu, B., Abbass, H. A., & McKay, B. (2002). Density-based heuristic for rule discovery with ant-miner. In 6th Australasia-Japan joint workshop on intelligent and evolutionary systems (AJWIS2002), Canberra, Australia. Google Scholar
  63. Liu, B., Abbass, H. A., & McKay, B. (2003). Classification rule discovery with ant colony optimization. In IAT (pp. 83–88). Los Alamitos: IEEE Computer Society. Google Scholar
  64. Lu, Y., Wang, S., Li, S., & Zhou, C. (2010). Particle swarm optimizer for variable weighting in clustering high-dimensional data. Machine Learning. Google Scholar
  65. Lumer, E. D., & Faieta, B. (1994). Diversity and adaptation in populations of clustering ants. In SAB94: Proceedings of the third international conference on simulation of adaptive behavior: from animals to animats 3 (pp. 501–508). Cambridge: MIT Press. Google Scholar
  66. van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605. Google Scholar
  67. Mackassy, S. A., & Provost, F. (2007). Classification in networked data: a toolkit and a univariate case study. Journal of Machine Learning Research, 8, 935–983. Google Scholar
  68. Maniezzo, V. (1999). Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS Journal on Computing, 11(4), 358–369. MATHCrossRefMathSciNetGoogle Scholar
  69. Martens, D., De Backer, M., Haesen, R., Baesens, B., Mues, C., & Vanthienen, J. (2006). Ant-based approach to the knowledge fusion problem. In Lecture notes in computer science: Proceedings of the fifth international workshop on ant colony optimization and swarm intelligence (pp. 85–96). Berlin: Springer. Google Scholar
  70. Martens, D., De Backer, M., Haesen, R., Snoeck, M., Vanthienen, J., & Baesens, B. (2007). Classification with ant colony optimization. IEEE Transaction on Evolutionary Computation, 11(5), 651–665. CrossRefGoogle Scholar
  71. Martens, D., Van Gestel, T., & Baesens, B. (2009). Decompositional rule extraction from support vector machines by active learning. IEEE Transactions on Knowledge and Data Engineering, 21(2), 178–191. CrossRefGoogle Scholar
  72. Mendes, R., Kennedy, J., & Neves, J. (2004). The fully informed particle swarm: simpler, maybe better. IEEE Transactions on Evolutionary Computation, 8(3), 204–210. CrossRefGoogle Scholar
  73. Montemanni, R., Gambardella, L. M., Rizzoli, A. E., & Donati, A. (2005). Ant colony system for a dynamic vehicle routing problem. Journal of Combinatorial Optimization, 10(4), 327–343. MATHCrossRefMathSciNetGoogle Scholar
  74. Ngenkaew, W., Ono, S., & Nakayama, S. (2008). The deposition of multiple pheromones in ant-based clustering. International Journal of Innovative Computing, Information and Control, 4(7), 1349–4198. Google Scholar
  75. Montes de Oca, M., Stützle, T., Birattari, M., & Dorigo, M. (2009). Frankenstein’s PSO: A composite particle swarm optimization algorithm. IEEE Transactions on Evolutionary Computation, 13(5), 1120–1132. CrossRefGoogle Scholar
  76. de Oliveira, D., & Bazzan, A. L. C. (2006). Traffic lights control with adaptive group formation based on swarm intelligence. In M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R. Poli, & T. Stützle (Eds.), Lecture notes in computer science : Vol. 4150. ANTS workshop (pp. 520–521). Berlin: Springer. Google Scholar
  77. Otero, F. E., Freitas, A. A., & Johnson, C. G. (2008). cant-miner: an ant colony classification algorithm to cope with continuous attributes. In ANTS ’08: proceedings of the 6th international conference on ant colony optimization and swarm intelligence (pp. 48–59). Berlin: Springer. CrossRefGoogle Scholar
  78. Otero, F. E. B., Freitas, A. A., & Johnson, C. G. (2009). Handling continuous attributes in ant colony classification algorithms. In CIDM (pp. 225–231). New York: IEEE. Google Scholar
  79. Özbakir, L., Baykasoglu, A., Kulluk, S., & YapIcI, H. (2009). TACO-miner: an ant colony based algorithm for rule extraction from trained neural networks. Expert Systems with Applications, 36(10), 12,295–12,305. CrossRefGoogle Scholar
  80. Paquet, U., & Engelbrecht, A. (2003). Training support vector machines with particle swarms. In International joint conference on neural networks (pp. 1593–1998). New York: IEEE Press. Google Scholar
  81. Parpinelli, R. S., Lopes, H. S., & Freitas, A. A. (2001). An ant colony based system for data mining: applications to medical data. In Proceedings of the genetic and evolutionary computation conference (GECCO-2001) (pp. 791–797). San Francisco: Morgan Kaufmann. Google Scholar
  82. Parpinelli, R. S., Lopes, H. S., & Freitas, A. A. (2002). Data mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computation, 6(4), 321–332. CrossRefGoogle Scholar
  83. Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33–57. CrossRefGoogle Scholar
  84. Pourtakdoust, S., & Nobahari, H. (2004). An extension of ant colony system to continuous optimization problems. In M. Dorigo, M. Birattari, C. Blum, L. Gambardella, F. Mondada, & T. Stützle (Eds.), Lecture notes in computer science : Vol. 3172. Proceedings of fourth international workshop on ant colony optimization and swarm intelligence—ANTS 2004 (pp. 294–301). Berlin: Springer. CrossRefGoogle Scholar
  85. Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: a gravitational search algorithm. Information Sciences, 179(13), 2232–2248. Special section on high order fuzzy sets. MATHCrossRefGoogle Scholar
  86. Ratnaweera, A., Halgamuge, S. K., & Watson, H. C. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 8(3), 240–255. CrossRefGoogle Scholar
  87. Reynolds, C. W. (1987). Flocks, herds and schools: a distributed behavioral model. In SIGGRAPH’87: proceedings of the 14th annual conference on computer graphics and interactive techniques (pp. 25–34). New York: ACM. CrossRefGoogle Scholar
  88. Samanta, B., & Nataraj, C. (2009). Application of particle swarm optimization and proximal support vector machines for fault detection. Swarm Intelligence, 3(4), 303–325. CrossRefGoogle Scholar
  89. Schockaert, S., Cock, M. D., Cornelis, C., & Kerre, E. E. (2004). Fuzzy ant based clustering. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, & T. Stützle (Eds.), Lecture notes in computer science : Vol. 3172. Ant colony optimization and swarm intelligence, 4th international workshop, ANTS 2004, Brussels, Belgium, September 5–8, 2004, Proceedings (pp. 342–349). Berlin: Springer. Google Scholar
  90. Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In Evolutionary computation proceedings, 1998. IEEE World congress on computational intelligence (pp. 69–73). Google Scholar
  91. Soares, C. (2003). Is the uci repository useful for data mining? In F. M. A. S. Pires (Ed.), Lecture notes in artificial intelligence : Vol. 2902. Proceedings of the 11th Portuguese conference on artificial intelligence (EPIA’03) (pp. 209–223). Beja: Springer. Google Scholar
  92. Socha, K. (2004). Extended ACO for continuous and mixed-variable optimization. In M. Dorigo, M. Birattari, C. Blum, L. Gambardella, F. Mondada, & T. Stützle (Eds.), Lecture notes in computer science : Vol. 3172. Proceedings of fourth international workshop on ant colony optimization and swarm intelligence—ANTS 2004 (pp. 25–36). Berlin: Springer. CrossRefGoogle Scholar
  93. Socha, K., & Blum, C. (2007). An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training. Neural Computing and Applications, 16(3), 235–247. CrossRefGoogle Scholar
  94. Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155–1173. MATHCrossRefMathSciNetGoogle Scholar
  95. Socha, K., Knowles, J. D., & Sampels, M. (2002). A \(\mathcal{MAX}\)-\(\mathcal{MIN}\) ant system for the university timetabling problem. In M. Dorigo, G. Di Caro, & M. Sampels (Eds.), Lecture notes in computer science : Vol. 2463. Proceedings of ANTS 2002—third international workshop on ant algorithms (pp. 1–13). Berlin: Springer. Google Scholar
  96. Sousa, T., Silva, A., & Neves, A. (2004). Particle swarm based data mining algorithms for classification tasks. Parallel Computing, 30(5–6), 767–783. CrossRefGoogle Scholar
  97. Stephens, D., & Krebs, J. (1986). Monographs in behavior and ecology. Foraging theory. Princeton: Princeton University Press. Google Scholar
  98. Stützle, T., & Hoos, H. H. (1996). Improving the ant-system: a detailed report on the \(\mathcal {MAX}\)-\(\mathcal{MIN}\) ant system. Tech. rep. AIDA 96-12, FG Intellektik, TU Darmstadt, Germany, URL sherry.ifi.unizh.ch/st96improving.html.
  99. Stützle, T., & Hoos, H. H. (2000). \(\mathcal{MAX}\)-\(\mathcal{MIN}\) ant system. Future Generation Computer Systems, 16(8), 889–914. CrossRefGoogle Scholar
  100. Tan, P. N., Steinbach, M., & Kumar, V. (2006). Introduction to data mining. Boston: Pearson Education. Google Scholar
  101. Tenenbaum, J. B., Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323. CrossRefGoogle Scholar
  102. Tsai, C. F., Tsai, C. W., Wu, H. C., & Yang, T. (2004). ACODF: a novel data clustering approach for data mining in large databases. Journal of Systems and Software, 73(1), 133–145. CrossRefGoogle Scholar
  103. van der Merwe, D., & Engelbrecht, A. P. (2003). Data clustering using particle swarm optimization. In IEEE congress on evolutionary computation (1) (pp. 215–220). New York: IEEE. Google Scholar
  104. von Neumann, J. (1966). Theory of self reproducing cellular automata. Champaign: University of Illinois Press. Google Scholar
  105. Wade, A., & Salhi, S. (2004). An ant system algorithm for the mixed vehicle routing problem with backhauls. In Metaheuristics: computer decision-making (pp. 699–719). Norwell: Kluwer Academic. Google Scholar
  106. Witten, I. H., & Frank, E. (2000). Data mining: practical machine learning tools and techniques with Java implementations. San Francisco: Morgan Kaufmann. Google Scholar
  107. Xu, X., Chen, L., & He, P. (2007). A novel ant clustering algorithm based on cellular automata. Web Intelligence and Agent Systems, 5(1), 1–14. MathSciNetGoogle Scholar
  108. Zheng, Y., Ma, l., Zhang, L., & Qian, J. (2003). On the convergence analysis and parameter selection in particle swarm optimization. In Proceedings of international conference on machine learning and cybernetics (pp. 1802–1807). Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Department of Business Administration and Public Management, University College GhentGhent UniversityGhentBelgium
  2. 2.Department of Decision Sciences & Information ManagementK.U. LeuvenLeuvenBelgium
  3. 3.School of ManagementUniversity of SouthamptonSouthamptonUK
  4. 4.Proofpoint, Inc.SunnyvaleUSA

Personalised recommendations