Advertisement

Machine Learning

, Volume 77, Issue 2–3, pp 161–164 | Cite as

Guest editorial: special issue on structured prediction

  • Charles ParkerEmail author
  • Yasemin Altun
  • Prasad Tadepalli
Open Access
Editorial

References

  1. Bakir, G. H., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., & Vishwanathan, S. V. N. (2007). Neural information processing. Predicting structured data. Cambridge: MIT Press. Google Scholar
  2. Daumé III, H., & Marcu, D. (2005). Learning as search optimization: approximate large margin methods for structured prediction. In Proceedings of the international conference on machine learning (pp. 169–176). Google Scholar
  3. Daumé III, H., Langford, J., & Marcu, D. (2009). Search-based structured prediction. Machine Learning, 75(3), 297–325. CrossRefGoogle Scholar
  4. Hsu, C.-N., Huang, H.-S., & Chang, Y.-M. (2009). Periodic step-size adaptation in second-order gradient descent for single-pass on-line structured learning. Machine Learning, 77(2–3), 195–224. CrossRefGoogle Scholar
  5. Lafferty, J. D., McCallum, A., & Pereira, F. (2001). Conditional random fields: probabilistic modeling for segmenting and labeling sequence data. In Proceedings of the international conference on machine learning (pp. 282–289). Google Scholar
  6. Lampert, C. H., & Blaschko, M. B. (2009). Structured prediction by joint kernel support estimation. Machine Learning, 77(2–3), 249–269. CrossRefGoogle Scholar
  7. Lauer, F., & Bloch, G. (2008). Incorporating prior knowledge in support vector machines for classification: a review. Neurocomputing, 71(7–9), 1578–1594. CrossRefGoogle Scholar
  8. Maes, F., Denoyer, L., & Gallinari, P. (2009). Structured prediction with reinforcement learning. Machine Learning, 77(2–3), 271–301. CrossRefGoogle Scholar
  9. Mao, Y., & Lebanon, G. (2009). Generalized isotonic conditional random fields. Machine Learning, 77(2–3), 225–248. CrossRefGoogle Scholar
  10. Neu, G., & Szepesvári, C. (2009). Training parsers by inverse reinforcement learning. Machine Learning, 77(2–3), 303–337. CrossRefGoogle Scholar
  11. Sutton, C., & McCallum, A. (2009). Piecewise training for structured prediction. Machine Learning, 77(2–3), 165–194. CrossRefGoogle Scholar
  12. Taskar, B., Guestrin, C., & Koller, D. (2004). Max-margin Markov networks. In NIPS. Google Scholar
  13. Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research, 6, 1453–1484. MathSciNetGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Charles Parker
    • 1
    Email author
  • Yasemin Altun
    • 2
  • Prasad Tadepalli
    • 3
  1. 1.Eastman Kodak CompanyRochesterUSA
  2. 2.Max Planck Institute for Biological CyberneticsTübingenGermany
  3. 3.Oregon State UniversityCorvallisUSA

Personalised recommendations