Machine Learning

, 78:203 | Cite as

Concept learning in description logics using refinement operators

Article

Abstract

With the advent of the Semantic Web, description logics have become one of the most prominent paradigms for knowledge representation and reasoning. Progress in research and applications, however, is constrained by the lack of well-structured knowledge bases consisting of a sophisticated schema and instance data adhering to this schema. It is paramount that suitable automated methods for their acquisition, maintenance, and evolution will be developed. In this paper, we provide a learning algorithm based on refinement operators for the description logic ALCQ including support for concrete roles. We develop the algorithm from thorough theoretical foundations by identifying possible abstract property combinations which refinement operators for description logics can have. Using these investigations as a basis, we derive a practically useful complete and proper refinement operator. The operator is then cast into a learning algorithm and evaluated using our implementation DL-Learner. The results of the evaluation show that our approach is superior to other learning approaches on description logics, and is competitive with established ILP systems.

Keywords

Description logics Refinement operators Inductive logic programming Semantic web OWL Structured machine learning 

References

  1. Auer, S., Dietzold, S., & Riechert, T. (2006). OntoWiki—a tool for social, semantic collaboration. In Lecture notes in computer science : Vol. 4273. The semantic web—ISWC 2006, 5th international semantic web conference, ISWC 2006, Athens, GA, USA, November 5–9, 2006, Proceedings (pp. 736–749). Berlin: Springer. Google Scholar
  2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2008). DBpedia: A nucleus for a web of open data. In Lecture notes in computer science : Vol. 4825. Proceedings of the 6th international semantic web conference (ISWC) (pp. 722–735). Berlin: Springer. Google Scholar
  3. Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. F. (Eds.) (2007). The description logic handbook: theory, implementation, and applications. Cambridge: Cambridge University Press. MATHGoogle Scholar
  4. Badea, L. (2000). Perfect refinement operators can be flexible. In W. Horn (Ed.), Proceedings of the 14th European conference on artificial intelligence (pp. 266–270). Amsterdam: IOS Press. Google Scholar
  5. Badea, L., & Nienhuys-Cheng, S.-H. (2000). A refinement operator for description logics. In J. Cussens & A. Frisch (Eds.), Lecture notes in artificial intelligence : Vol. 1866. Proceedings of the 10th international conference on inductive logic programming (pp. 40–59). Berlin: Springer. CrossRefGoogle Scholar
  6. Badea, L., & Stanciu, M. (1999). Refinement operators can be (weakly) perfect. In S. Džeroski & P. Flach (Eds.), Lecture notes in artificial intelligence : Vol. 1634. Proceedings of the 9th international workshop on inductive logic programming (pp. 21–32). Berlin: Springer. Google Scholar
  7. Belleau, F., Tourigny, N., Good, B., & Morissette, J. (2008). Bio2RDF: A semantic web atlas of post genomic knowledge about human and mouse. In A. Bairoch, S. C. Boulakia, & C. Froidevaux (Eds.), Lecture notes in computer science : Vol. 5109. DILS (pp. 153–160). Berlin: Springer. Google Scholar
  8. Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1990). Occam’s razor. In J. W. Shavlik & T. G. Dietterich (Eds.), Readings in machine learning (pp. 201–204). San Mateo: Morgan Kaufmann. Google Scholar
  9. Brachman, R. J. (1978). A structural paradigm for representing knowledge. Technical Report BBN Report 3605, Bolt, Beraneck and Newman, Inc., Cambridge, MA. Google Scholar
  10. Bratko, I. (1999). Refining complete hypotheses in ILP. In S. Džeroski & P. Flach (Eds.), Lecture notes in artificial intelligence : Vol. 1634. Proceedings of the 9th international workshop on inductive logic programming (pp. 44–55). Berlin: Springer. Google Scholar
  11. Buitelaar, P., Cimiano, P., & Magnini, B. (Eds.) (2007). Ontology learning from text: Methods, evaluation and applications. Frontiers in artificial intelligence (Vol. 123). Amsterdam: IOS Press. Google Scholar
  12. Cohen, W. W., & Hirsh, H. (1994). Learning the CLASSIC description logic: Theoretical and experimental results. In J. Doyle, E. Sandewall, & P. Torasso (Eds.), Proceedings of the 4th international conference on principles of knowledge representation and reasoning (pp. 121–133). San Mateo: Morgan Kaufmann. Google Scholar
  13. Cohen, W. W., Borgida, A., & Hirsh, H. (1993). Computing least common subsumers in description logics. In Proceedings of the tenth national conference on artificial intelligence (pp. 754–760). Menlo Park: AAAI Press. Google Scholar
  14. Davies, J., Studer, R., & Warren, P. (Eds.) (2006). Semantic web technologies—trends and research in ontology-based systems. New York: Wiley. Google Scholar
  15. de Bruijn, J., Lara, R., Polleres, A., & Fensel, D. (2005). OWL DL vs OWL flight: conceptual modeling and reasoning for the semantic web. In A. Ellis & T. Hagino (Eds.), Proceedings of the 14th international conference on World Wide Web, WWW 2005, Chiba, Japan, May 10–14, 2005 (pp. 623–632). New York: ACM. CrossRefGoogle Scholar
  16. Dietterich, T., Domingos, P., Getoor, L., Muggleton, S., & Tadepalli, P. (2008). Structured machine learning: the next ten years. Machine Learning, 73(1), 3–23. CrossRefGoogle Scholar
  17. Domingos, P. (1998). Occam’s two razors: The sharp and the blunt. In Proceedings of the fourth international conference on knowledge discovery and data mining (pp. 37–43). Google Scholar
  18. Dutra, I., Page, D., Costa, V. S., & Shavlik, J. (2003). An empirical evaluation of bagging in inductive logic programming. In S. Matwin & C. Sammut (Eds.), Lecture notes in artificial intelligence : Vol. 2583. Proceedings of the 12th international conference on inductive logic programming (pp. 48–65). Berlin: Springer. Google Scholar
  19. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., & Semeraro, G. (2004). Knowledge-intensive induction of terminologies from metadata. In The semantic web—ISWC 2004: Third international semantic web conference, Hiroshima, Japan, November 7–11, 2004. Proceedings (pp. 441–455). Berlin: Springer. Google Scholar
  20. Fanizzi, N., Ferilli, S., Mauro, N. D., & Basile, T. M. A. (2003). Spaces of theories with ideal refinement operators. In G. Gottlob & T. Walsh (Eds.), IJCAI-03, Proceedings of the eighteenth international joint conference on artificial intelligence, Acapulco, Mexico, August 9–15, 2003 (pp. 527–532). San Mateo: Morgan Kaufmann. Google Scholar
  21. Fanizzi, N., Ferilli, S., Iannone, L., Palmisano, I., & Semeraro, G. (2004). Downward refinement in the ALN description logic. In HIS (pp. 68–73). New York: IEEE Computer Society. Google Scholar
  22. Hellmann, S., Lehmann, J., & Auer, S. (2009). Learning of OWL class descriptions on very large knowledge bases. International Journal on Semantic Web and Information Systems, Special Issue on Scalability and Performance of Semantic Web Systems, 5(2), 25–48. Google Scholar
  23. Hitzler, P., Krötzsch, M., & Rudolph, S. (2009). Foundations of semantic web technologies. Boca Raton: CRC Press/Chapman & Hall. Google Scholar
  24. Horrocks, I., Patel-Schneider, P. F., & van Harmelen, F. (2003). From \(\mathcal{SHIQ}\) and RDF to OWL: The making of a web ontology language. Journal of Web Semantics, 1(1), 7–26. Google Scholar
  25. Horrocks, I., Kutz, O., & Sattler, U. (2006). The even more irresistible SROIQ. In P. Doherty, J. Mylopoulos, & C. A. Welty (Eds.), Proceedings, tenth international conference on principles of knowledge representation and reasoning, Lake District of the United Kingdom, June 2–5, 2006 (pp. 57–67). Menlo Park: AAAI Press. Google Scholar
  26. Iannone, L., & Palmisano, I. (2005). An algorithm based on counterfactuals for concept learning in the semantic web. In Proceedings of the 18th international conference on industrial and engineering applications of artificial intelligence and expert systems (pp. 370–379), Bari, Italy. Google Scholar
  27. Iannone, L., Palmisano, I., & Fanizzi, N. (2007). An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence, 26(2), 139–159. CrossRefGoogle Scholar
  28. Jiang, N., & Colton, S. (2006). Boosting descriptive ILP for predictive learning in bioinformatics. In S. Muggleton, R. P. Otero, & A. Tamaddoni-Nezhad (Eds.), Lecture notes in computer science : Vol. 4455. Proceedings of the 15th international conference on inductive logic programming (pp. 275–289). Berlin: Springer. Google Scholar
  29. Kietz, J.-U., & Morik, K. (1994). A polynomial approach to the constructive induction of structural knowledge. Machine Learning, 14, 193–217. MATHCrossRefGoogle Scholar
  30. Krötzsch, M., Rudolph, S., & Hitzler, P. (2008a). Description logic rules. In M. Ghallab et al. (Eds.), Proceedings of the 18th European conf. on artificial intelligence (ECAI-08) (pp. 80–84). Amsterdam: IOS Press. Google Scholar
  31. Krötzsch, M., Rudolph, S., & Hitzler, P. (2008b). ELP: tractable rules for OWL 2. In A. Sheth et al. (Eds.), Lecture notes in computer science : Vol. 5318. The semantic web—ISWC 2008, 7th international semantic web conference (pp. 649–664). Berlin: Springer. Google Scholar
  32. Lehmann, J. (2007). Hybrid learning of ontology classes. In P. Perner (Ed.), Lecture notes in computer science : Vol. 4571. Machine learning and data mining in pattern recognition, 5th international conference, MLDM 2007, Leipzig, Germany, July 18–20, 2007, Proceedings (pp. 883–898). Berlin: Springer. Google Scholar
  33. Lehmann, J., & Hitzler, P. (2007a). Foundations of refinement operators for description logics. In H. Blockeel, J. Ramon, J. W. Shavlik, & P. Tadepalli (Eds.), Lecture notes in computer science : Vol. 4894. Inductive logic programming, 17th international conference, ILP 2007, Corvallis, OR, USA, June 19–21, 2007, Revised selected papers (pp. 161–174). Berlin: Springer. Google Scholar
  34. Lehmann, J., & Hitzler, P. (2007b). A refinement operator based learning algorithm for the alc description logic. In H. Blockeel, J. Ramon, J. W. Shavlik, & P. Tadepalli (Eds.), Lecture notes in computer science : Vol. 4894. Inductive logic programming, 17th international conference, ILP 2007, Corvallis, OR, USA, June 19–21, 2007, Revised selected papers (pp. 147–160). Berlin: Springer. Google Scholar
  35. Lisi, F. A., & Malerba, D. (2003). Ideal refinement of descriptions in AL-log. In T. Horváth (Ed.), Lecture notes in computer science : Vol. 2835. Inductive logic programming: 13th international conference, ILP 2003, Szeged, Hungary, September 29–October 1, 2003, Proceedings (pp. 215–232). Berlin: Springer. Google Scholar
  36. Michalski, R. S. (1980). Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(4), 349–361. MATHCrossRefGoogle Scholar
  37. Mitchell, T. (1997). Machine learning. New York: McGraw Hill. MATHGoogle Scholar
  38. Nienhuys-Cheng, S.-H., & de Wolf, R. (Eds.) (1997). Foundations of inductive logic programming. Lecture notes in computer science, (Vol. 1228). Berlin: Springer. Google Scholar
  39. Nienhuys-Cheng, S.-H., Laer, W. V., Ramon, J., & Raedt, L. D. (1999). Generalizing refinement operators to learn prenex conjunctive normal forms. In S. Džeroski & P. Flach (Eds.), Lecture notes in artificial intelligence : Vol. 1634. Proceedings of the 9th international workshop on inductive logic programming (pp. 245–256). Berlin: Springer. Google Scholar
  40. Nienhuys-Cheng, S. H., van der Laag, P. R. J., & van der Torre, L. W. N. (1993). Constructing refinement operators by decomposing logical implication. In P. Torasso (Ed.), LNAI : Vol. 728. Advances in artificial intelligence: Proceedings of the 3rd congress of the Italian association for artificial intelligence (AI*IA’93), Torino, Italy (pp. 178–189). Berlin: Springer. Google Scholar
  41. Patel-Schneider, P. F., & Horrocks, I. (2007). A comparison of two modelling paradigms in the semantic web. Journal on Web Semantics, 5(4), 240–250. Google Scholar
  42. Rector, A. L., & Brandt, S. (2008). Why do it the hard way? The case for an expressive description logic for SNOMED. Journal of the American Medical Informatics Association. Google Scholar
  43. Richards, B. L., & Mooney, R. J. (1995). Refinement of first-order Horn-clause domain theories. Machine Learning, 19(2), 95–131. Google Scholar
  44. Schwitter, R., Kaljurand, K., Cregan, A., Dolbear, C., & Hart, G. (2008). A comparison of three controlled natural languages for OWL 1.1. In K. Clark & P. F. Patel-Schneider (Eds.), Proceedings of the fourth international workshop OWL: Experiences and directions, OWLED2008DC, Washington, DC, April 2008. Available from http://www.webont.org/owled/2008dc.
  45. Shapiro, E. Y. (1991). Inductive inference of theories from facts. In J. L. Lassez & G. D. Plotkin (Eds.), Computational logic: Essays in honor of Alan Robinson (pp. 199–255). Cambridge: MIT Press. Google Scholar
  46. Srinivasan, A., King, R. D., Muggleton, S., & Sternberg, M. J. E. (1997). Carcinogenesis predictions using ILP. In S. Džeroski & N. Lavrač (Eds.), Lecture notes in artificial intelligence : Vol. 1297. Proceedings of the 7th international workshop on inductive logic programming (pp. 273–287). Berlin: Springer. Google Scholar
  47. Staab, S., & Studer, R. (Eds.) (2004). Handbook on ontologies. International handbooks on information systems. Heidelberg: Springer. Google Scholar
  48. van der Laag, P. R. J., & Nienhuys-Cheng, S.-H. (1994). Existence and nonexistence of complete refinement operators. In F. Bergadano & L. D. Raedt (Eds.), Lecture notes in artificial intelligence : Vol. 784. Proceedings of the 7th European conference on machine learning (pp. 307–322). Berlin: Springer. Google Scholar
  49. Völker, J., Hitzler, P., & Cimiano, P. (2007). Acquisition of OWL DL axioms from lexical resources. In E. Franconi, M. Kifer, & W. May (Eds.), Lecture notes in computer science : Vol. 4519. Proceedings of the 4th European semantic web conference (ESWC’07) (pp. 670–685). Berlin: Springer. Google Scholar
  50. Šebelík, J., & Štěpánek, P. (1982). Horn clause programs for recursive functions. In K. Clark & S.-Å. Tärnlund (Eds.), Logic programming (pp. 324–340). New York: Academic Press. Google Scholar
  51. Železný, F., Srinivasan, A., & Page, D. (2003). Lattice-search runtime distributions may be heavy-tailed. In S. Matwin & C. Sammut (Eds.), Lecture notes in artificial intelligence : Vol. 2583. Proceedings of the 12th international conference on inductive logic programming (pp. 333–345). Berlin: Springer. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversität LeipzigLeipzigGermany
  2. 2.Kno.e.sis CenterWright State UniversityDaytonUSA

Personalised recommendations