Machine Learning

, Volume 65, Issue 1, pp 229–245 | Cite as

An efficient top-down search algorithm for learning Boolean networks of gene expression

Article

Abstract

Boolean networks provide a simple and intuitive model for gene regulatory networks, but a critical defect is the time required to learn the networks. In recent years, efficient network search algorithms have been developed for a noise-free case and for a limited function class. In general, the conventional algorithm has the high time complexity of O(22kmnk+1) where m is the number of measurements, n is the number of nodes (genes), and k is the number of input parents. Here, we suggest a simple and new approach to Boolean networks, and provide a randomized network search algorithm with average time complexity O(mnk+1/ (log m)(k−1)). We show the efficiency of our algorithm via computational experiments, and present optimal parameters. Additionally, we provide tests for yeast expression data.

Keywords

Boolean network Data consistency Random superset selection Core search Coupon collection problem 

References

  1. Akutsu, T., Kuhara, S., & Miyano, S. (1999a). Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Proc. Pacific Symp. on Biocomputing ’99, World Scientific, (pp. 17–28).Google Scholar
  2. Akutsu, T., Miyano, S., & Kuhara, S. (1999b). Fast identification of Boolean networks. Technical Report 99-AL-66, Information Processing Society of Japan: (pp. 25–32).Google Scholar
  3. Akutsu, T., Miyano, S., & Kuhara, S. (2000a). Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function. J. Comp. Biol., 7(3/4), 331–343.CrossRefGoogle Scholar
  4. Akutsu, T., Miyano, S., & Kuhara, S. (2000b). Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics, 16(8), 727–734.CrossRefGoogle Scholar
  5. Akutsu, T., Miyano, S., & Kuhara, S. (2003). A simple greedy algorithm for finding functional relations: efficient implementation and average case analysis. Theoretical Computer Science, 292(2), 481–495.MATHMathSciNetCrossRefGoogle Scholar
  6. Fukagawa, D., & Akutsu, T. (2003). Performance analysis of a greedy algorithm for inferring Boolean functions Discovery Science.Google Scholar
  7. Friedman, N., Linial, M., Nachman, I., & Pe’er, D. (2000). Using Bayesian networks to analyze expression data. J. Comp. Biol., 9, 601–620.CrossRefGoogle Scholar
  8. Kauffman, S.A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol., 22, 437–466.MathSciNetCrossRefGoogle Scholar
  9. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., et al. (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae, Science, 298, 799–804.CrossRefGoogle Scholar
  10. Liang, S., Fuhrman, S., & Somogy, R. (1998). REVEAL. a general reverse engineering algorithm for inference of genetic network architectures. Proc. Pacific Symp. on Biocomputing ’98, World Scientific, (pp. 18–29).Google Scholar
  11. Shmulevich, I., Dougherty, E. R., Kim, S. & Zhang, W. (2002). Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18, 261–274.CrossRefGoogle Scholar
  12. Boros, E., Ibaraki, T., & Makino, K. (1998). Error-Free and Best-Fit Extensions of partially defined Boolean functions. Information and Computation, 140, 254–283.MATHMathSciNetCrossRefGoogle Scholar
  13. Lähdesmäki, H., Shmulevich, I., & Yli-Haria, O. (2003). On learning gene regulatory networks under the Boolean network model. Machine Learning, 52, 147–167.Google Scholar
  14. Stanley, R. P. (1997). Enumerative Combinatorics (vol. 1). Cambridge Press.Google Scholar
  15. Wilf, H. S. (1992). Generatingfunctionology. Academic Press.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.National Genome Information CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRep. of Korea
  2. 2.Department of MathematicsSeoul National UniversitySeoulRep. of Korea
  3. 3.Department of BioinformaticsSoongsil Univ.SeoulRep. of Korea

Personalised recommendations