Machine Learning

, Volume 60, Issue 1–3, pp 97–115

Online Multiclass Learning with k-Way Limited Feedback and an Application to Utterance Classification



This paper introduces a setting for multiclass online learning with limited feedback and its application to utterance classification. In this learning setting, a parameter k limits the number of choices presented for selection by the environment (e.g. by the user in the case of an interactive spoken system) during each trial of the online learning sequence. New versions of standard additive and multiplicative weight update algorithms for online learning are presented that are more suited to the limited feedback setting, while sharing the efficiency advantages of the standard ones. The algorithms are evaluated on an utterance classification task in two domains. In this utterance classification task, no training material for the domain is provided (for training the speech recognizer or classifier) prior to the start of online learning. We present experiments on the effect of varying k and the weight update algorithms on the learning curve for online utterance classification. In these experiments, the new online learning algorithms improve classification accuracy compared with the standard ones. The methods presented are directly relevant to applications such as building call routing systems that adapt from feedback rather than being trained in batch mode.


online learning limited feedback utterance classification call routing 

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Google, Inc.&New YorkUSA

Personalised recommendations