# Intensional Protocols for Dynamic Epistemic Logic

## Abstract

In dynamical multi-agent systems, agents are controlled by protocols. In choosing a class of formal protocols, an implicit choice is made concerning the types of agents, actions and dynamics representable. This paper investigates one such choice: An intensional protocol class for agent control in dynamic epistemic logic (DEL), called ‘DEL dynamical systems’. After illustrating how such protocols may be used in formalizing and analyzing information dynamics, the types of epistemic temporal models that they may generate are characterized. This facilitates a formal comparison with the only other formal protocol framework in dynamic epistemic logic, namely the extensional ‘DEL protocols’. The paper concludes with a conceptual comparison, highlighting modeling tasks where DEL dynamical systems are natural.

## Keywords

Dynamic epistemic logic Multi-agent systems Protocols Epistemic temporal logic Dynamical systems## Preview

Unable to display preview. Download preview PDF.

## Notes

### Acknowledgments

The Center for Information and Bubble Studies is funded by the Carlsberg Foundation. The contribution of R.K. Rendsvig to the research reported in this article was also funded by the Swedish Research Council through the framework project ‘Knowledge in a Digital World’ (Erik J. Olsson, PI): A previous version of this paper occurs in the thesis [57]. We thank Alexandru Baltag, Johan van Benthem, Thomas Bolander, Vincent F. Hendricks and Dominik Klein for valuable comments on elements of this paper, as well as the participants of the 2016 CADILLAC and the 2016 LogiCIC workshops, held in Christiania, Denmark, and Amsterdam, the Netherlands, respectively.

## References

- 1.Ågotnes, T., van Ditmarsch, H., Wang, Y. (2017). True lies.
*Synthese*,*195*(10), 4581–4615.CrossRefGoogle Scholar - 2.Artemov, S., Davoren, J., Nerode, A. (1997). Modal logics and topological semantics for hybrid systems. Technical report, Cornell University.Google Scholar
- 3.Aucher, G., & Bolander, T. (2013). Undecidability in epistemic planning. In
*Proceedings of the twenty-third international joint conference on artificial intelligence*(pp. 27–33). AAAI Press.Google Scholar - 4.Aucher, G., Maubert, B., Pinchinat, S. (2014). Automata techniques for epistemic protocol synthesis. In
*Proceedings 2nd international workshop on strategic reasoning, SR 2014, Grenoble, France, April 5–6, 2014*(pp. 97–103).Google Scholar - 5.Baltag, A., & Moss, L.S. (2004). Logics for epistemic programs.
*Synthese*,*139*(2), 165–224.CrossRefGoogle Scholar - 6.Baltag, A., & Renne, B. (2016). Dynamic epistemic logic. In E.N. Zalta (Ed.)
*, The Stanford encyclopedia of philosophy*. Fall 2016 edition.Google Scholar - 7.Baltag, A., & Smets, S. (2008). A qualitative theory of dynamic interactive belief revision. In G. Bonanno, W. van der Hoek, M. Wooldridge (Eds.)
*, Logic and the foundations of game and decision theory (LOFT 7), Texts in logic and games (Vol. 3, pp. 9–58). Amsterdam University Press*.Google Scholar - 8.Baltag, A., & Smets, S. (2009). Group belief dynamics under iterated revision: fixed points and cycles of joint upgrades. In
*Proceedings of the 12th conference on theoretical aspects of rationality and knowledge, TARK ’09*(pp. 41–50). New York: ACM.Google Scholar - 9.van Benthem, J. (2002). “One is a lonely number”: logic and communication. In Z. Chatzidakis, P. Koepke, W. Pohlers (Eds.)
*, Logic colloquium ’02. Lecture notes in logic, 27*(pp. 95–128). Association for Symbolic Logic.Google Scholar - 10.van Benthem, J. (2011).
*Logical dynamics of information and interaction*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - 11.van Benthem, J. (2016). Oscillations, logic, and dynamical systems. In S. Ghosh, & J. Szymanik (Eds.)
*The facts matter*(pp. 9–22). College Publications.Google Scholar - 12.van Benthem, J., & Dégremont, C. (2010). Bridges between dynamic doxastic and doxastic temporal logics. In
*Logic and the foundations of game and decision theory–LOFT 8*(pp. 151–173). Berlin: Springer.Google Scholar - 13.van Benthem, J., & Smets, S. (2015). Dynamic logics of belief change. In H. van Ditmarsch, J.Y. Halpern, W. van der Hoek, B. Kooi (Eds.)
*, Handbook of logics for knowledge and belief*(pp. 299–368). College Publications.Google Scholar - 14.van Benthem, J., van Eijck, J., Kooi, B. (2006). Logics of communication and change.
*Information and Computation*,*204*(11), 1620–1662.CrossRefGoogle Scholar - 15.van Benthem, J., Gerbrandy, J., Hoshi, T., Pacuit, E. (2009). Merging frameworks for interaction.
*Journal of Philosophical Logic*,*38*(5), 491–526.CrossRefGoogle Scholar - 16.Baltag, A., Moss, L.S., Solecki, S. (1998). The logic of public announcements, common knowledge, and private suspicions (extended abstract). In
*Proceedings of the international conference of TARK 1998*(pp. 43–56). Morgan Kaufmann Publishers.Google Scholar - 17.Blackburn, P., de Rijke, M., Venema, Y. (2001).
*Modal logic*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - 18.Bolander, T., & Birkegaard, M. (2011). Epistemic planning for single- and multi-agent systems.
*Journal of Applied Non-Classical Logics*,*21*(1), 9–34.CrossRefGoogle Scholar - 19.Bolander, T., Jensen, M.H., Schwarzentruber, F. (2015). Complexity results in epistemic planning. In
*Proceedings of IJCAI 2015 (24th international joint conference on artificial intelligence)*.Google Scholar - 20.Dégremont, C. (2010). The temporal mind: observations on the logic of belief change in interactive systems. PhD thesis, University of Amsterdam.Google Scholar
- 21.van Ditmarsch, H., & Kooi, B. (2008). Semantic results for ontic and epistemic change. In G. Bonanno, W. van der Hoek, M. Wooldridge (Eds.)
*, Logic and the foundations of game and decision theory (LOFT 7). Texts in logic and games (Vol. 3, pages 87–117)*. Amsterdam University Press.Google Scholar - 22.van Ditmarsch, H., van der Hoek, W., Kooi, B. (2008).
*Dynamic epistemic logic*. Berlin: Springer.CrossRefGoogle Scholar - 23.van Ditmarsch, H., Ghosh, S., Verbrugge, R., Wang, Y. (2014). Hidden protocols: modifying our expectations in an evolving world.
*Artificial Intelligence*,*208*, 18–40.CrossRefGoogle Scholar - 24.Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y. (1995).
*Reasoning about knowledge*. Cambridge: The MIT Press.Google Scholar - 25.Fernández-Duque, D. (2012). A sound and complete axiomatization for Dynamic Topological Logic.
*Journal of Symbolic Logic*,*77*(3), 1–26.CrossRefGoogle Scholar - 26.Fernández-Duque, D. (2012). Dynamic topological logic of metric spaces.
*Journal of Symbolic Logic*,*77*(1), 308–328.CrossRefGoogle Scholar - 27.Fernández-Duque, D. (2014). Non-finite axiomatizability of dynamic topological logic.
*ACM Transactions on Computational Logic*,*15*(1), 1–18.CrossRefGoogle Scholar - 28.Galeazzi, P., & Lorini, E. (2016). Epistemic logic meets epistemic game theory: a comparison between multi-agent Kripke models and type spaces.
*Synthese*,*193*(7), 2097–2127.CrossRefGoogle Scholar - 29.Gerbrandy, J., & Groeneveld, W. (1997). Reasoning about information change.
*Journal of Logic, Language and Information*,*6*(2), 147–169.CrossRefGoogle Scholar - 30.Gierasimczuk, N. (2010). Knowing one’s limits. Phd thesis, Institute for Logic, Language and Computation, University of Amsterdam.Google Scholar
- 31.Goranko, V., & Otto, M. (2008). Model theory of modal logic. In P. Blackburn, J. van Benthem, F. Wolter (Eds.)
*, Handbook of modal logic*. Elsevier.Google Scholar - 32.Halpern, J.Y., & Moses, Y. (1990). Knowledge and common knowledge in a distributed environment.
*Journal of the ACM*,*37*(3), 549–587.CrossRefGoogle Scholar - 33.Halpern, J.Y., & Vardi, M.Y. (1988). Reasoning about knowledge and time in asynchronous systems. In
*Proceedings of the 20th ACM symposium on theory of computing, STOC ’88*(pp. 53–65). ACM.Google Scholar - 34.Halpern, J.Y., & Vardi, M.Y. (1989). The complexity of reasoning about knowledge and time. I. Lower bounds.
*Journal of Computer and System Sciences*,*38*(1), 195–237.CrossRefGoogle Scholar - 35.Halpern, J.Y., van der Meyden, R., Vardi, M.Y. (2004). Complete axiomatizations for reasoning about knowledge and time.
*SIAM Journal of Computation*,*33*(3), 674–703.CrossRefGoogle Scholar - 36.Hintikka, J. (1962).
*Knowledge and belief: an introduction to the logic of the two notions, 2nd, 2005 edition*. London: College Publications.Google Scholar - 37.Hoshi, T. (2009). Epistemic dynamics and protocol information. PhD thesis, ILLC, Universiteit van Amsterdam.Google Scholar
- 38.Hoshi, T. (2010). Merging DEL and ETL.
*Journal of Logic, Language and Information*,*19*(4), 413–430.CrossRefGoogle Scholar - 39.Klein, D., & Rendsvig, R.K. (2017). Convergence, continuity and recurrence in dynamic epistemic logic. In A. Baltag, & J. Seligman (Eds.)
*, Logic and rational interaction (LORI VI). Lecture Notes in Computer Science*. Berlin: Springer.Google Scholar - 40.Klein, D., & Rendsvig, R.K. (2017). Metrics for formal structures, with an application to dynamic epistemic logic. arXiv:1704.00977.
- 41.Kremer, P., & Mints, G. (1997). Dynamical topological logic.
*Bulleting of Symbolic Logic*,*3*, 371–372.Google Scholar - 42.Kremer, P., & Mints, G. (2007). Dynamic topological logic. In M. Aiello, I. Pratt-Hartmann, J. van Benthem (Eds.)
*, Handbook of spatial logics, chapter 10*(pp. 565–606).Google Scholar - 43.Liu, F., Seligman, J., Girard, P. (2014). Logical dynamics of belief change in the community.
*Synthese*,*191*(11), 2403–2431.CrossRefGoogle Scholar - 44.van der Meyden, R. (1994). Axioms for knowledge and time in distributed systems with perfect recall. In
*Proceedings ninth annual IEEE symposium on logic in computer science*(pp. 448–457).Google Scholar - 45.van der Meyden, R. (1997). Constructing finite state implementations of knowledge-based programs with perfect recall. In
*Intelligent agent systems theoretical and practical issues*(pp. 135–151). Berlin: Springer.Google Scholar - 46.van der Meyden, R., & Wong, K.-S. (2003). Complete axiomatizations for reasoning about knowledge and branching time.
*Studia Logica*,*75*(1), 93–123.CrossRefGoogle Scholar - 47.Mohalik, S., & Ramanujam, R. (2010). Automata for epistemic temporal logic with synchronous communication.
*Journal of Logic, Language and Information*,*19*(4), 451–484.CrossRefGoogle Scholar - 48.Moss, L.S. (2015). Dynamic epistemic logic. In van Ditmarsch, H., J.Y. Halpern, W. van der Hoek, B. Kooi (Eds.)
*, Handbook of epistemic logic*. College Publications.Google Scholar - 49.Osbourne, M.J., & Rubinstein, A. (1994).
*A course in game theory*. Cambridge: The MIT Press.Google Scholar - 50.Parikh, R., & Ramanujam, R. (1985). Distributed processes and the logic of knowledge. In Parikh, R. (Ed.)
*, Logics of programs*(pp. 256–268). Heidelberg: Berlin.Google Scholar - 51.Parikh, R., & Ramanujam, R. (2003). A knowledge based semantics of messages.
*Journal of Logic, Language and Information*,*12*(4), 453–467.CrossRefGoogle Scholar - 52.Plaza, J.A. (1989). Logics of public communications. In M.L. Emrich, M.S. Pfeifer, M. Hadzikadic, Z.W. Ras (Eds.)
*, Proceedings of the 4th international symposium on methodologies for intelligent systems*(pp. 201–216).Google Scholar - 53.Rendsvig, R.K. (2013). Aggregated beliefs and informational cascades. In D. Grossi, O. Roy, R.K. Rendsvig (Eds.)
*, Logic, rationality, and interaction. Lecture Notes in Computer Science*(pp. 337–341). Berlin: Springer.Google Scholar - 54.Rendsvig, R.K. (2014). Diffusion, influence and best-response dynamics in networks: an action model approach. In R. de Haan (Ed.)
*, Proceedings of the ESSLLI 2014 student session*. arXiv:1708.01477 (pp. 63–75). - 55.Rendsvig, R.K. (2014). Pluralistic ignorance in the bystander effect: informational dynamics of unresponsive witnesses in situations calling for intervention.
*Synthese*,*191*(11), 2471–2498.CrossRefGoogle Scholar - 56.Rendsvig, R.K. (2015). Model transformers for dynamical systems of dynamic epistemic logic. In W. van der Hoek, W.H. Holliday, W.F. Wang (Eds.)
*, Logic, rationality, and interaction (LORI 2015, Taipei), LNCS*(pp. 316–327). Berlin: Springer.Google Scholar - 57.Rendsvig, R.K. (2018). Logical dynamics and dynamical systems. PhD thesis, Lund University.Google Scholar
- 58.Rodenhäuser, B. (2011). A logic for extensional protocols.
*Journal of Applied Non-Classical Logics*,*21*(3–4), 477–502.CrossRefGoogle Scholar - 59.Sadzik, T. (2006). Exploring the iterated update universe. ILLC Report PP-2006-263, pp. 1–34.Google Scholar
- 60.Sarenac, D. (2011). Modal logic for qualitative dynamics. In O. Roy, P. Girard, M. Marion (Eds.)
*, Dynamic formal epistemology, volume 351 of Synthese Library*(pp. 75–101). Berlin: Springer.Google Scholar - 61.Wang, Y. (2010). Epistemic modelling and protocol dynamics. Phd thesis, Universiteit van Amsterdam.Google Scholar
- 62.Wooldridge, M., & Lomuscio, A. (1999). Reasoning about visibility, perception, and knowledge. In
*International workshop on agent theories, architectures and languages*(pp. 1–12). Berlin: Springer.Google Scholar