Intensional Protocols for Dynamic Epistemic Logic

  • Hanna S. van Lee
  • Rasmus K. RendsvigEmail author
  • Suzanne van Wijk


In dynamical multi-agent systems, agents are controlled by protocols. In choosing a class of formal protocols, an implicit choice is made concerning the types of agents, actions and dynamics representable. This paper investigates one such choice: An intensional protocol class for agent control in dynamic epistemic logic (DEL), called ‘DEL dynamical systems’. After illustrating how such protocols may be used in formalizing and analyzing information dynamics, the types of epistemic temporal models that they may generate are characterized. This facilitates a formal comparison with the only other formal protocol framework in dynamic epistemic logic, namely the extensional ‘DEL protocols’. The paper concludes with a conceptual comparison, highlighting modeling tasks where DEL dynamical systems are natural.


Dynamic epistemic logic Multi-agent systems Protocols Epistemic temporal logic Dynamical systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The Center for Information and Bubble Studies is funded by the Carlsberg Foundation. The contribution of R.K. Rendsvig to the research reported in this article was also funded by the Swedish Research Council through the framework project ‘Knowledge in a Digital World’ (Erik J. Olsson, PI): A previous version of this paper occurs in the thesis [57]. We thank Alexandru Baltag, Johan van Benthem, Thomas Bolander, Vincent F. Hendricks and Dominik Klein for valuable comments on elements of this paper, as well as the participants of the 2016 CADILLAC and the 2016 LogiCIC workshops, held in Christiania, Denmark, and Amsterdam, the Netherlands, respectively.


  1. 1.
    Ågotnes, T., van Ditmarsch, H., Wang, Y. (2017). True lies. Synthese, 195(10), 4581–4615.CrossRefGoogle Scholar
  2. 2.
    Artemov, S., Davoren, J., Nerode, A. (1997). Modal logics and topological semantics for hybrid systems. Technical report, Cornell University.Google Scholar
  3. 3.
    Aucher, G., & Bolander, T. (2013). Undecidability in epistemic planning. In Proceedings of the twenty-third international joint conference on artificial intelligence (pp. 27–33). AAAI Press.Google Scholar
  4. 4.
    Aucher, G., Maubert, B., Pinchinat, S. (2014). Automata techniques for epistemic protocol synthesis. In Proceedings 2nd international workshop on strategic reasoning, SR 2014, Grenoble, France, April 5–6, 2014 (pp. 97–103).Google Scholar
  5. 5.
    Baltag, A., & Moss, L.S. (2004). Logics for epistemic programs. Synthese, 139(2), 165–224.CrossRefGoogle Scholar
  6. 6.
    Baltag, A., & Renne, B. (2016). Dynamic epistemic logic. In E.N. Zalta (Ed.) , The Stanford encyclopedia of philosophy. Fall 2016 edition.Google Scholar
  7. 7.
    Baltag, A., & Smets, S. (2008). A qualitative theory of dynamic interactive belief revision. In G. Bonanno, W. van der Hoek, M. Wooldridge (Eds.) , Logic and the foundations of game and decision theory (LOFT 7), Texts in logic and games (Vol. 3, pp. 9–58). Amsterdam University Press.Google Scholar
  8. 8.
    Baltag, A., & Smets, S. (2009). Group belief dynamics under iterated revision: fixed points and cycles of joint upgrades. In Proceedings of the 12th conference on theoretical aspects of rationality and knowledge, TARK ’09 (pp. 41–50). New York: ACM.Google Scholar
  9. 9.
    van Benthem, J. (2002). “One is a lonely number”: logic and communication. In Z. Chatzidakis, P. Koepke, W. Pohlers (Eds.) , Logic colloquium ’02. Lecture notes in logic, 27 (pp. 95–128). Association for Symbolic Logic.Google Scholar
  10. 10.
    van Benthem, J. (2011). Logical dynamics of information and interaction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  11. 11.
    van Benthem, J. (2016). Oscillations, logic, and dynamical systems. In S. Ghosh, & J. Szymanik (Eds.) The facts matter (pp. 9–22). College Publications.Google Scholar
  12. 12.
    van Benthem, J., & Dégremont, C. (2010). Bridges between dynamic doxastic and doxastic temporal logics. In Logic and the foundations of game and decision theory–LOFT 8 (pp. 151–173). Berlin: Springer.Google Scholar
  13. 13.
    van Benthem, J., & Smets, S. (2015). Dynamic logics of belief change. In H. van Ditmarsch, J.Y. Halpern, W. van der Hoek, B. Kooi (Eds.) , Handbook of logics for knowledge and belief (pp. 299–368). College Publications.Google Scholar
  14. 14.
    van Benthem, J., van Eijck, J., Kooi, B. (2006). Logics of communication and change. Information and Computation, 204(11), 1620–1662.CrossRefGoogle Scholar
  15. 15.
    van Benthem, J., Gerbrandy, J., Hoshi, T., Pacuit, E. (2009). Merging frameworks for interaction. Journal of Philosophical Logic, 38(5), 491–526.CrossRefGoogle Scholar
  16. 16.
    Baltag, A., Moss, L.S., Solecki, S. (1998). The logic of public announcements, common knowledge, and private suspicions (extended abstract). In Proceedings of the international conference of TARK 1998 (pp. 43–56). Morgan Kaufmann Publishers.Google Scholar
  17. 17.
    Blackburn, P., de Rijke, M., Venema, Y. (2001). Modal logic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. 18.
    Bolander, T., & Birkegaard, M. (2011). Epistemic planning for single- and multi-agent systems. Journal of Applied Non-Classical Logics, 21(1), 9–34.CrossRefGoogle Scholar
  19. 19.
    Bolander, T., Jensen, M.H., Schwarzentruber, F. (2015). Complexity results in epistemic planning. In Proceedings of IJCAI 2015 (24th international joint conference on artificial intelligence).Google Scholar
  20. 20.
    Dégremont, C. (2010). The temporal mind: observations on the logic of belief change in interactive systems. PhD thesis, University of Amsterdam.Google Scholar
  21. 21.
    van Ditmarsch, H., & Kooi, B. (2008). Semantic results for ontic and epistemic change. In G. Bonanno, W. van der Hoek, M. Wooldridge (Eds.) , Logic and the foundations of game and decision theory (LOFT 7). Texts in logic and games (Vol. 3, pages 87–117). Amsterdam University Press.Google Scholar
  22. 22.
    van Ditmarsch, H., van der Hoek, W., Kooi, B. (2008). Dynamic epistemic logic. Berlin: Springer.CrossRefGoogle Scholar
  23. 23.
    van Ditmarsch, H., Ghosh, S., Verbrugge, R., Wang, Y. (2014). Hidden protocols: modifying our expectations in an evolving world. Artificial Intelligence, 208, 18–40.CrossRefGoogle Scholar
  24. 24.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y. (1995). Reasoning about knowledge. Cambridge: The MIT Press.Google Scholar
  25. 25.
    Fernández-Duque, D. (2012). A sound and complete axiomatization for Dynamic Topological Logic. Journal of Symbolic Logic, 77(3), 1–26.CrossRefGoogle Scholar
  26. 26.
    Fernández-Duque, D. (2012). Dynamic topological logic of metric spaces. Journal of Symbolic Logic, 77(1), 308–328.CrossRefGoogle Scholar
  27. 27.
    Fernández-Duque, D. (2014). Non-finite axiomatizability of dynamic topological logic. ACM Transactions on Computational Logic, 15(1), 1–18.CrossRefGoogle Scholar
  28. 28.
    Galeazzi, P., & Lorini, E. (2016). Epistemic logic meets epistemic game theory: a comparison between multi-agent Kripke models and type spaces. Synthese, 193(7), 2097–2127.CrossRefGoogle Scholar
  29. 29.
    Gerbrandy, J., & Groeneveld, W. (1997). Reasoning about information change. Journal of Logic, Language and Information, 6(2), 147–169.CrossRefGoogle Scholar
  30. 30.
    Gierasimczuk, N. (2010). Knowing one’s limits. Phd thesis, Institute for Logic, Language and Computation, University of Amsterdam.Google Scholar
  31. 31.
    Goranko, V., & Otto, M. (2008). Model theory of modal logic. In P. Blackburn, J. van Benthem, F. Wolter (Eds.) , Handbook of modal logic. Elsevier.Google Scholar
  32. 32.
    Halpern, J.Y., & Moses, Y. (1990). Knowledge and common knowledge in a distributed environment. Journal of the ACM, 37(3), 549–587.CrossRefGoogle Scholar
  33. 33.
    Halpern, J.Y., & Vardi, M.Y. (1988). Reasoning about knowledge and time in asynchronous systems. In Proceedings of the 20th ACM symposium on theory of computing, STOC ’88 (pp. 53–65). ACM.Google Scholar
  34. 34.
    Halpern, J.Y., & Vardi, M.Y. (1989). The complexity of reasoning about knowledge and time. I. Lower bounds. Journal of Computer and System Sciences, 38 (1), 195–237.CrossRefGoogle Scholar
  35. 35.
    Halpern, J.Y., van der Meyden, R., Vardi, M.Y. (2004). Complete axiomatizations for reasoning about knowledge and time. SIAM Journal of Computation, 33(3), 674–703.CrossRefGoogle Scholar
  36. 36.
    Hintikka, J. (1962). Knowledge and belief: an introduction to the logic of the two notions, 2nd, 2005 edition. London: College Publications.Google Scholar
  37. 37.
    Hoshi, T. (2009). Epistemic dynamics and protocol information. PhD thesis, ILLC, Universiteit van Amsterdam.Google Scholar
  38. 38.
    Hoshi, T. (2010). Merging DEL and ETL. Journal of Logic, Language and Information, 19(4), 413–430.CrossRefGoogle Scholar
  39. 39.
    Klein, D., & Rendsvig, R.K. (2017). Convergence, continuity and recurrence in dynamic epistemic logic. In A. Baltag, & J. Seligman (Eds.) , Logic and rational interaction (LORI VI). Lecture Notes in Computer Science. Berlin: Springer.Google Scholar
  40. 40.
    Klein, D., & Rendsvig, R.K. (2017). Metrics for formal structures, with an application to dynamic epistemic logic. arXiv:1704.00977.
  41. 41.
    Kremer, P., & Mints, G. (1997). Dynamical topological logic. Bulleting of Symbolic Logic, 3, 371–372.Google Scholar
  42. 42.
    Kremer, P., & Mints, G. (2007). Dynamic topological logic. In M. Aiello, I. Pratt-Hartmann, J. van Benthem (Eds.) , Handbook of spatial logics, chapter 10 (pp. 565–606).Google Scholar
  43. 43.
    Liu, F., Seligman, J., Girard, P. (2014). Logical dynamics of belief change in the community. Synthese, 191(11), 2403–2431.CrossRefGoogle Scholar
  44. 44.
    van der Meyden, R. (1994). Axioms for knowledge and time in distributed systems with perfect recall. In Proceedings ninth annual IEEE symposium on logic in computer science (pp. 448–457).Google Scholar
  45. 45.
    van der Meyden, R. (1997). Constructing finite state implementations of knowledge-based programs with perfect recall. In Intelligent agent systems theoretical and practical issues (pp. 135–151). Berlin: Springer.Google Scholar
  46. 46.
    van der Meyden, R., & Wong, K.-S. (2003). Complete axiomatizations for reasoning about knowledge and branching time. Studia Logica, 75(1), 93–123.CrossRefGoogle Scholar
  47. 47.
    Mohalik, S., & Ramanujam, R. (2010). Automata for epistemic temporal logic with synchronous communication. Journal of Logic, Language and Information, 19 (4), 451–484.CrossRefGoogle Scholar
  48. 48.
    Moss, L.S. (2015). Dynamic epistemic logic. In van Ditmarsch, H., J.Y. Halpern, W. van der Hoek, B. Kooi (Eds.) , Handbook of epistemic logic. College Publications.Google Scholar
  49. 49.
    Osbourne, M.J., & Rubinstein, A. (1994). A course in game theory. Cambridge: The MIT Press.Google Scholar
  50. 50.
    Parikh, R., & Ramanujam, R. (1985). Distributed processes and the logic of knowledge. In Parikh, R. (Ed.) , Logics of programs (pp. 256–268). Heidelberg: Berlin.Google Scholar
  51. 51.
    Parikh, R., & Ramanujam, R. (2003). A knowledge based semantics of messages. Journal of Logic, Language and Information, 12(4), 453–467.CrossRefGoogle Scholar
  52. 52.
    Plaza, J.A. (1989). Logics of public communications. In M.L. Emrich, M.S. Pfeifer, M. Hadzikadic, Z.W. Ras (Eds.) , Proceedings of the 4th international symposium on methodologies for intelligent systems (pp. 201–216).Google Scholar
  53. 53.
    Rendsvig, R.K. (2013). Aggregated beliefs and informational cascades. In D. Grossi, O. Roy, R.K. Rendsvig (Eds.) , Logic, rationality, and interaction. Lecture Notes in Computer Science (pp. 337–341). Berlin: Springer.Google Scholar
  54. 54.
    Rendsvig, R.K. (2014). Diffusion, influence and best-response dynamics in networks: an action model approach. In R. de Haan (Ed.) , Proceedings of the ESSLLI 2014 student session. arXiv:1708.01477 (pp. 63–75).
  55. 55.
    Rendsvig, R.K. (2014). Pluralistic ignorance in the bystander effect: informational dynamics of unresponsive witnesses in situations calling for intervention. Synthese, 191(11), 2471–2498.CrossRefGoogle Scholar
  56. 56.
    Rendsvig, R.K. (2015). Model transformers for dynamical systems of dynamic epistemic logic. In W. van der Hoek, W.H. Holliday, W.F. Wang (Eds.) , Logic, rationality, and interaction (LORI 2015, Taipei), LNCS (pp. 316–327). Berlin: Springer.Google Scholar
  57. 57.
    Rendsvig, R.K. (2018). Logical dynamics and dynamical systems. PhD thesis, Lund University.Google Scholar
  58. 58.
    Rodenhäuser, B. (2011). A logic for extensional protocols. Journal of Applied Non-Classical Logics, 21(3–4), 477–502.CrossRefGoogle Scholar
  59. 59.
    Sadzik, T. (2006). Exploring the iterated update universe. ILLC Report PP-2006-263, pp. 1–34.Google Scholar
  60. 60.
    Sarenac, D. (2011). Modal logic for qualitative dynamics. In O. Roy, P. Girard, M. Marion (Eds.) , Dynamic formal epistemology, volume 351 of Synthese Library (pp. 75–101). Berlin: Springer.Google Scholar
  61. 61.
    Wang, Y. (2010). Epistemic modelling and protocol dynamics. Phd thesis, Universiteit van Amsterdam.Google Scholar
  62. 62.
    Wooldridge, M., & Lomuscio, A. (1999). Reasoning about visibility, perception, and knowledge. In International workshop on agent theories, architectures and languages (pp. 1–12). Berlin: Springer.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Center for Information and Bubble StudiesUniversity of CopenhagenCopenhagenDenmark
  2. 2.Theoretical PhilosophyLund UniversityLundSweden
  3. 3.DiemenThe Netherlands

Personalised recommendations