Advertisement

The Fmla-Fmla Axiomatizations of the Exactly True and Non-falsity Logics and Some of Their Cousins

  • Yaroslav Shramko
  • Dmitry Zaitsev
  • Alexander Belikov
Article
  • 8 Downloads

Abstract

In this paper we present a solution of the axiomatization problem for the Fmla-Fmla versions of the Pietz and Rivieccio exactly true logic and the non-falsity logic dual to it. To prove the completeness of the corresponding binary consequence systems we introduce a specific proof-theoretic formalism, which allows us to deal simultaneously with two consequence relations within one logical system. These relations are hierarchically organized, so that one of them is treated as the basic for the resulting logic, and the other is introduced as an extension of this basic relation. The proposed bi-consequences systems allow for a standard Henkin-style canonical model used in the completeness proof. The deductive equivalence of these bi-consequence systems to the corresponding binary consequence systems is proved. We also outline a family of the bi-consequence systems generated on the basis of the first-degree entailment logic up to the classic consequence.

Keywords

First-degree entailment Exactly true logic Non-falsity logic Fmla-Fmla logical framework Bi-consequence system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank two anonymous reviewers for their valuable comments that greatly contributed to improving the final version of the paper.

References

  1. 1.
    Albuquerque, H., Přenosil, A., Rivieccio, U. (2017). An algebraic view of super-Belnap logics. Studia Logica, 105, 1051–1086.CrossRefGoogle Scholar
  2. 2.
    Ackermann, W. (1956). Begründung einer strengen Implikation. Journal of Symbolic Logic, 21, 113–128.CrossRefGoogle Scholar
  3. 3.
    Anderson, A.R., & Belnap, N.D. (1975). Entailment: the logic of relevance and necessity (Vol. I). Princeton: Princeton University Press.Google Scholar
  4. 4.
    Anderson, A.R., Belnap, N.D., Dunn, J.M. (1992). Entailment: the logic of relevance and necessity (Vol. II). Princeton: Princeton University Press.Google Scholar
  5. 5.
    Avron, A., & E. Orłowska. (2003). Classical Gentzen-type methods in propositional many-valued logics. In M. Fitting (Ed.) , Beyond two: theory and applications of multiple-valued logic (pp. 117–155). Berlin–Heidelberg: Springer.CrossRefGoogle Scholar
  6. 6.
    Belnap, N.D. (1977). A useful four-valued logic. In J.M. Dunn, & G. Epstein (Eds.) , Modern uses of multiple-valued logic (pp. 8–37). Dordrecht: D. Reidel Publishing Company.CrossRefGoogle Scholar
  7. 7.
    Belnap, N.D. (1977). How a computer should think. In G. Ryle (Ed.) , Contemporary aspects of philosophy (pp. 30–55). London: Oriel Press.Google Scholar
  8. 8.
    Demri, S., & Orlowska, E. (2002). Incomplete information: structure, inference, complexity. Berlin: Springer.CrossRefGoogle Scholar
  9. 9.
    Dunn, J.M. (1976). Intuitive semantics for first-degree entailment and coupled trees. Philosophical Studies, 29, 149–168.CrossRefGoogle Scholar
  10. 10.
    Dunn, J.M. (1995). Positive modal logic. Studia Logica, 55, 301–317.CrossRefGoogle Scholar
  11. 11.
    Dunn, J.M. (1999). A comparative study of various model-theoretic treatmets of negation: a history of formal negation. In D.M. Gabbay, & H. Wansing (Eds.) , What is negation? (pp. 23–51). Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
  12. 12.
    Dunn, J.M. (2000). Partiality and its dual. Studia Logica, 66, 5–40.CrossRefGoogle Scholar
  13. 13.
    Dunn, J.M., & Hardegree, G.M. (2001). Algebraic methods in philosophical logic. Oxford, New York: Clarendon Press, Oxford University Press.Google Scholar
  14. 14.
    Fitting, M.C. (1989). Bilattices and the theory of truth. Journal of Philosophical Logic, 18, 225–256.CrossRefGoogle Scholar
  15. 15.
    Font, J.M. (1997). Belnap’s four-valued logic and De Morgan lattices. Logic Journal of the IGPL, 5, 413–440.CrossRefGoogle Scholar
  16. 16.
    Frankowski, S. (2004). Formalization of a plausible inference. Bulletin of the Section of Logic, 33, 41–52.Google Scholar
  17. 17.
    Hartonas, C. (2017). Order-dual relational semantics for non-distributive propositional logics. Logic Journal of the IGPL, 25, 145–182.Google Scholar
  18. 18.
    Humberstone, L. (2011). The connectives. Cambridge: MIT Press.Google Scholar
  19. 19.
    Labuschagne, W., Heidema, J., Britz, K. (2013). Supraclassical consequence relations. In S. Cranefield, & A. Nayak (Eds.) , AI 2013: advances in artificial intelligence. AI 2013. Lecture Notes in Computer Science (Vol. 8272, pp. 326–337). Cham: Springer.Google Scholar
  20. 20.
    MacIntosh, J.J. (1991). Adverbially qualified truth values. Pacific Philosophical Quarterly, 72, 131–142.CrossRefGoogle Scholar
  21. 21.
    Malinowski, G. (1990). Q-consequence operation. Reports on Mathematical Logic, 24, 49–59.Google Scholar
  22. 22.
    Marcos, J. (2011). The value of the two values. In J.-Y. Beziau, M.E. Coniglio (Eds.), Logic without frontiers: festschrift for Walter Alexandre Carnielli on the occasion of his 60th birthday (pp. 277–294). (Tributes), College Publications.Google Scholar
  23. 23.
    Odintsov, S., & Wansing, H. (2015). The logic of generalized truth-values and the logic of bilattices. Studia Logica, 103, 91–112.CrossRefGoogle Scholar
  24. 24.
    Omori, H., Wansing, H. (Eds.) (2017). 40 Years of FDE, Special Issue of Studia Logica, 105, Issue 6.Google Scholar
  25. 25.
    Pietz, A., & Rivieccio, U. (2013). Nothing but the truth. Journal of Philosophical Logic, 42, 125–135.CrossRefGoogle Scholar
  26. 26.
    Priest, G. (2008). An introduction to non-classical logic (2nd edn). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  27. 27.
    Rescher, N. (1965). An intuitive interpretation of systems of four-valued logic. Notre Dame Journal of Formal Logic, 6, 154–156.CrossRefGoogle Scholar
  28. 28.
    Rivieccio, U. (2012). An infinity of super-Belnap logics. Journal of Applied Non-Classical Logics, 22, 319–335.CrossRefGoogle Scholar
  29. 29.
    Shramko, Y. (2016). Truth, falsehood, information and beyond: the American plan generalized. In K. Bimbo (Ed.), J. Michael Dunn on Information Based Logics. Outstanding Contributions to Logic, (Vol. 8, pp. 191–212). Berlin: Springer.Google Scholar
  30. 30.
    Shramko, Y. (2018). First-degree entailment and structural reasoning, to appear. In H. Omori, H. Wansing (Eds.), New Essays on Belnap-Dunn Logic, Synthese Library.Google Scholar
  31. 31.
    Shramko, Y. (2018). Dual-Belnal logic and anaything but falsehood, to appear in: Journal of Applied Logic.Google Scholar
  32. 32.
    Shramko, Y., Dunn, J.M., Takenaka, T. (2001). The trilaticce of constructive truth-values. Journal of Logic and Computation, 11, 761–788.CrossRefGoogle Scholar
  33. 33.
    Shramko, Y., & Wansing, H. (2005). Some useful sixteen-valued logics: how a computer network should think. Journal of Philosophical Logic, 34, 121–153.CrossRefGoogle Scholar
  34. 34.
    Shramko, Y., & Wansing, H. (2007). Entailment relations and/as truth values. Bulletin of the Section of Logic, 36, 131–143.Google Scholar
  35. 35.
    Shramko, Y., Zaitsev, D., Belikov, A. (2017). First-degree entailment and its relatives. Studia Logica, 105, 1291–1317.CrossRefGoogle Scholar
  36. 36.
    Vakarelov, D. (1995). A duality between Pawlak’s knowledge representation systems and bi-consequence systems. Studia Logica, 55, 205–228.CrossRefGoogle Scholar
  37. 37.
    van Benthem, J. (2008). Logic and reasoning: do the facts matter? Studia Logica, 88, 67–84.CrossRefGoogle Scholar
  38. 38.
    Wansing, H., & Shramko, Y. (2008). A note on two ways of defining a many-valued logic. In M. Pelis (Ed.) The logica yearbook 2007 (pp. 255–266). Filosofia: Prague.Google Scholar
  39. 39.
    Wintein, S., & Muskens, R. (2016). A Gentzen calculus for nothing but the truth. Journal of Philosophical Logic, 45, 451–465.CrossRefGoogle Scholar
  40. 40.
    Zaitsev, D. (2009). A few more useful 8-valued logics for reasoning with tetralattice E I G H T 4. Studia Logica, 92, 265–280.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of PhilosophyKryvyi Rih State Pedagogical UniversityKryvyi RihUkraine
  2. 2.Department of LogicLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations