# Rethinking Revision

- 11 Downloads

## Abstract

We sketch a broadening of the Gupta-Belnap notion of a *circular* or *revision theoretic definition* into that of a more generalized form incorporating ideas of Kleene’s *generalized* or *higher type recursion*. This thereby connects the philosophically motivated, and derived, notion of a circular definition with an older form of definition by recursion using functionals, that is functions of functions, as oracles. We note that Gupta and Belnap’s notion of *‘categorical in L’* can be formulated in at least one of these schemes.

## Keywords

Revision theory Spector class Kleene recursion Theory of definition## References

- 1.Belnap, N. (1982). Gupta’s rule of revision theory of truth.
*Journal of Philosophical Logic*,*11*, 103–116.CrossRefGoogle Scholar - 2.Burgess, J.P. (1986). The truth is never simple.
*Journal of Symbolic Logic*,*51*(3), 663–681.CrossRefGoogle Scholar - 3.Field, H. (2003). A revenge-immune solution to the semantic paradoxes.
*Journal of Philosophical Logic*,*32*(3), 139–177.CrossRefGoogle Scholar - 4.Field, H. (2008) In Beall, J.C. (Ed.),
*The Revenge of the Liar*. Oxford: O.U.P.Google Scholar - 5.Gandy, R.O. (1967). Generalized recursive functionals of finite type and hierarchies of functionals.
*Annales de la Faculté, des Sciences de l’Université de Clermont-Ferrand*,*35*, 5–24.Google Scholar - 6.Gupta, A. (1981). Truth and paradox.
*Journal of Philosophical Logic*,*11*, 1–60.CrossRefGoogle Scholar - 7.Gupta, A., & Belnap, N. (1993).
*The revision theory of truth*. Cambridge: MIT Press.Google Scholar - 8.Hamkins, J.D., & Lewis, A. (2000). Infinite time Turing machines.
*Journal of Symbolic Logic*,*65*(2), 567–604.CrossRefGoogle Scholar - 9.Herzberger, H.G. (1982). Naive semantics and the Liar paradox.
*Journal of Philosophy*,*79*, 479–497.CrossRefGoogle Scholar - 10.Herzberger, H.G. (1982). Notes on naive semantics.
*Journal of Philosophical Logic*,*11*, 61–102.CrossRefGoogle Scholar - 11.Hinman, P. (1978).
*Recursion-Theoretic Hierarchies. Ω series in mathematical logic*. Berlin: Springer.CrossRefGoogle Scholar - 12.Kechris, A., & Moschovakis, Y.N. (1977). Recursion in higher types. In Barwise (Ed.)
*Handbook of Mathematical Logic, Studies in Logic and Foundations of Mathematics, chapter C6, 681–738. North-Holland, Amtserdam*.CrossRefGoogle Scholar - 13.Kechris, A.S. (1978). On Spector classes. In Kechris, A.S., & Moschovakis, Y.N. (Eds.)
*Cabal Seminar 76-77, volume 689 of Lecture Notes in Mathematics Series, 245–278. Springer*.Google Scholar - 14.Kleene, S.C. (1959). Quantification of number-theoretic predicates.
*Compositio Mathematicae*,*14*, 23–40.Google Scholar - 15.Kleene, S.C. (1963). Recursive quantifiers and functionals of finite type II.
*Transactions of the American Mathematical Society*,*108*, 106–142.Google Scholar - 16.Kühnberger, K.-U., Löwe, B., Möllerfeld, M., Welch, P.D. (2005). Comparing inductive and circular definitions: parameters, complexity and games.
*Studia Logica*,*81*, 79–98.CrossRefGoogle Scholar - 17.Löwe, B. (2001). Revision sequences and computers with an infinite amount of time.
*Journal of Logic and Computation*,*11*, 25–40.CrossRefGoogle Scholar - 18.Löwe, B., & Welch, P.D. (2001). Set-theoretic absoluteness and the revision theory of truth.
*Studia Logica*,*68*(1), 21–41.CrossRefGoogle Scholar - 19.Moschovakis, Y.N. (1974). Elementary Induction on Abstract structures, volume 77 of Studies in Logic series. North-Holland, Amsterdam.Google Scholar
- 20.Moschovakis, Y.N. (2009). Descriptive Set Theory. Studies in Logic series. North-Holland, Amsterdam.Google Scholar
- 21.Soare, R.I. (1987). Recursively enumerable sets and degrees. Perspectives in mathematical logic. Springer.Google Scholar
- 22.Welch, P.D. (2000). Eventually Infinite Time Turing degrees: infinite time decidable reals.
*Journal of Symbolic Logic*,*65*(3), 1193–1203.CrossRefGoogle Scholar - 23.Welch, P.D. (2003). On revision operators.
*Journal of Symbolic Logic*,*68*(3), 689–711.CrossRefGoogle Scholar - 24.Welch, P.D. (2008). Ultimate truth
*vis à vis*stable truth.*Review of Symbolic Logic*,*1*(1), 126–142.CrossRefGoogle Scholar - 25.Welch, P.D. (2014). Some observations on truth hierarchies.
*Review of Symbolic Logic*,*7*(1), 1–30.CrossRefGoogle Scholar - 26.Yaqūb, A. (1993).
*The liar speaks the truth. a defense of the revision theory of truth*. New York: O.U.P.Google Scholar

## Copyright information

**Open Access**This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.