Advertisement

Guest Editors’ Introduction

  • Riccardo Bruni
  • Shawn Standefer
Guest Editorial
  • 64 Downloads

Notes

Acknowledgments

We would like to thank Jeff Horty and Frank Veltman for agreeing to this special issue of the Journal of Philosophical Logic, the authors who submitted articles, and the referees for their detailed and helpful reports. We owe a special thanks to Anil Gupta for discussion and support throughout the process of editing this special issue.

Standefer’s work on this issue and the editors’ introduction was supported by the Australian Research Council, Discovery Grant DP150103801.

References

  1. 1.
    Antonelli, G.A. (1992). Revision rules: an investigation into non-monotonic inductive denitions. Ph.D. thesis, University of Pittsburgh.Google Scholar
  2. 2.
    Antonelli, G.A. (1994). The complexity of revision. Notre Dame Journal of Formal Logic, 35, 67–72.  https://doi.org/10.1305/ndjfl/1040609294.CrossRefGoogle Scholar
  3. 3.
    Antonelli, G.A. (1994). Non-well-founded sets via revision rules. Journal of Philosophical Logic, 23, 633–679.  https://doi.org/10.1007/BF01052781.CrossRefGoogle Scholar
  4. 4.
    Antonelli, G.A. (1994). A revision-theoretic analysis of the arithmetical hierarchy. Notre Dame Journal of Formal Logic, 35, 204–218.  https://doi.org/10.1305/ndjfl/1094061861.CrossRefGoogle Scholar
  5. 5.
    Antonelli, G.A. (2002). The complexity of revision, revised. Notre Dame Journal of Formal Logic, 43, 75–78.  https://doi.org/10.1305/ndjfl/1071509429.CrossRefGoogle Scholar
  6. 6.
    Asmus, C.M. (2013). Vagueness and revision sequences. Synthese, 190, 953–974.  https://doi.org/10.1007/s11229-011-0052-0.CrossRefGoogle Scholar
  7. 7.
    Belnap, N. (1982). Gupta’s rule of revision theory of truth. Journal of Philosophical Logic, 11, 103–116.  https://doi.org/10.1007/BF00302340.CrossRefGoogle Scholar
  8. 8.
    Bruni, R. (2013). Analytic calculi for circular concepts by finite revision. Studia Logica, 101, 915–932.  https://doi.org/10.1007/s11225-012-9402-2.CrossRefGoogle Scholar
  9. 9.
    Bruni, R., & Sillari, G. (2018). A rational way of playing: revision theory for strategic interaction. Journal of Philosophical Logic, 47(3), 419–448.  https://doi.org/10.1007/s10992-017-9433-2.CrossRefGoogle Scholar
  10. 10.
    Burgess, J.P. (1986). The truth is never simple. Journal of Symbolic Logic, 51, 663–681.  https://doi.org/10.2307/2274021.CrossRefGoogle Scholar
  11. 11.
    Cantini, A. (1989). Notes on formal theories of truth. Mathematical Logic Quarterly, 35, 97–130.  https://doi.org/10.1002/malq.19890350202.CrossRefGoogle Scholar
  12. 12.
    Chapuis, A. (1996). Alternative revision theories of truth. Journal of Philosophical Logic, 25(4), 399–423.  https://doi.org/10.1007/BF00249666.CrossRefGoogle Scholar
  13. 13.
    Chapuis, A. (2000). Rationality and circularity. In Chapuis, A., & Gupta, A. (Eds.) Circularity, definition, and truth (pp. 49–77). Indian Council of Philosophical Research.Google Scholar
  14. 14.
    Chapuis, A. (2003). An application of circular definitions: rational decision. In Löwe, B., Malzkorn, W., Räsch, T. (Eds.) Foundations of the formal sciences II: applications of mathematical logic in philosophy and linguistics (pp. 47–54). Dordercht: Kluwer.Google Scholar
  15. 15.
    Field, H. (2003). A revenge-immune solution to the semantic paradoxes. Journal of Philosophical Logic, 32, 139–177.  https://doi.org/10.1023/A:1023027808400.CrossRefGoogle Scholar
  16. 16.
    Field, H. (2008). Saving truth from paradox. London: Oxford University Press.CrossRefGoogle Scholar
  17. 17.
    Field, H. (2008). Solving the paradoxes, escaping revenge. In Beall, J. (Ed.) The revenge of the liar, (pp. 78–144). Oxford University Press.Google Scholar
  18. 18.
    Field, H. (2016). Indicative conditionals, restricted quantification, and naive truth. The Review of Symbolic Logic, 9(1), 181–208.  https://doi.org/10.1017/S1755020315000301.CrossRefGoogle Scholar
  19. 19.
    Fitting, M. (1986). Notes on the mathematical aspects of Kripke’s theory of truth. Notre Dame Journal of Formal Logic, 27(1), 75–88.  https://doi.org/10.1305/ndjfl/1093636525.CrossRefGoogle Scholar
  20. 20.
    Gupta, A. (1982). Truth and paradox. Journal of Philosophical Logic, 11, 1–60.  https://doi.org/10.1007/BF00302338.CrossRefGoogle Scholar
  21. 21.
    Gupta, A. (1988-89). Remarks on definitions and the concept of truth. Proceedings of the Aristotelian Society. 89 227–246.  https://doi.org/10.1093/aristotelian/89.1.227. Reprinted in [25], pp. 73–94.
  22. 22.
    Gupta, A. (1997). Definition and revision: a response to McGee and Martin. Philosophical Issues, 8, 419–443.  https://doi.org/10.2307/1523021. A revised version with a postscript is reprinted as “Definition and Revision” in [25], pp. 135–163.CrossRefGoogle Scholar
  23. 23.
    Gupta, A. (2006). Empiricism and experience. London: Oxford University Press.CrossRefGoogle Scholar
  24. 24.
    Gupta, A. (2006). Finite circular definitions. In Bolander, T., Hendricks, V.F., Andersen, S.A. (Eds.) Self-reference, (pp. 79–93). CSLI Publications.Google Scholar
  25. 25.
    Gupta, A. (2011). Truth, meaning, experience. London: Oxford University Press.Google Scholar
  26. 26.
    Gupta, A., & Belnap, N. (1993). The revision theory of truth. Cambridge: MIT Press.Google Scholar
  27. 27.
    Gupta, A., & Standefer, S. (2017). Conditionals in theories of truth. Journal of Philosophical Logic, 46, 27–63.  https://doi.org/10.1007/s10992-015-9393-3.CrossRefGoogle Scholar
  28. 28.
    Herzberger, H.G. (1982). Naive semantics and the liar paradox. Journal of Philosophy, 79, 479–497.  https://doi.org/10.2307/2026380.CrossRefGoogle Scholar
  29. 29.
    Herzberger, H.G. (1982). Notes on naive semantics. Journal of Philosophical Logic, 11, 61–102.  https://doi.org/10.1007/BF00302339.CrossRefGoogle Scholar
  30. 30.
    Horsten, L., Leigh, G.E., Leitgeb, H., Welch, P.D. (2012). Revision revisited. Review of Symbolic Logic, 5, 642–664.  https://doi.org/10.1017/S175502031100030X.CrossRefGoogle Scholar
  31. 31.
    Hsiung, M. (2009). Jump liars and Jourdain’s card via the relativized T-scheme. Studia Logica, 91(2), 239–271.  https://doi.org/10.1007/s11225-009-9174-5.CrossRefGoogle Scholar
  32. 32.
    Hsiung, M. (2013). Equiparadoxicality of Yablo’s paradox and the liar. Journal of Logic Language and Information, 22(1), 23–31.  https://doi.org/10.1007/s10849-012-9166-0.CrossRefGoogle Scholar
  33. 33.
    Hsiung, M. (2014). Tarski’s theorem and liar-like paradoxes. Logic Journal of the IGPL, 22(1), 24–38.  https://doi.org/10.1093/jigpal/jzt020.CrossRefGoogle Scholar
  34. 34.
    Hsiung, M. (2017). Boolean paradoxes and revision periods. Studia Logica, 105, 881–914.  https://doi.org/10.1007/s11225-017-9715-2.CrossRefGoogle Scholar
  35. 35.
    Kremer, P. (1993). The Gupta-Belnap systems S # and S * are not axiomatisable. Notre Dame Journal of Formal Logic, 34, 583–596.  https://doi.org/10.1305/ndjfl/1093633907.CrossRefGoogle Scholar
  36. 36.
    Kremer, P. (2009). Comparing fixed-point and revision theories of truth. Journal of Philosophical Logic, 38(4), 363–403.  https://doi.org/10.1007/s10992-009-9107-9.CrossRefGoogle Scholar
  37. 37.
    Kremer, P. (2010). How truth behaves when there’s no vicious reference. Journal of Philosophical Logic, 39(4), 345–367.  https://doi.org/10.1007/s10992-010-9136-4.CrossRefGoogle Scholar
  38. 38.
    Kremer, P. (2016). The revision theory of truth. In Zalta, E.N. (Ed.) The Stanford encyclopedia of philosophy, winter 2016 edn. Metaphysics Research Lab, Stanford University.Google Scholar
  39. 39.
    Kripke, S. (1975). Outline of a theory of truth. Journal of Philosophy, 72, 690–716.  https://doi.org/10.2307/2024634.CrossRefGoogle Scholar
  40. 40.
    Kühnberger, K.U., Löwe, B., Möllerfeld, M., Welch, P.D. (2005). Comparing inductive and circular definitions: parameters, complexity and games. Studia Logica, 81, 79–98.  https://doi.org/10.1007/s11225-005-2803-8.CrossRefGoogle Scholar
  41. 41.
    Lee, B. (1998). The paradox of belief instability and a revision theory of belief. Pacific Philosophical Quarterly, 79(4), 314–328.  https://doi.org/10.1111/1468-0114.00066.CrossRefGoogle Scholar
  42. 42.
    Leitgeb, H. (2008). On the probabilistic convention T. Review of Symbolic Logic, 1(2), 218–224.  https://doi.org/10.1017/S1755020308080167.CrossRefGoogle Scholar
  43. 43.
    Löwe, B. (2001). Revision sequences and computers with an infinite amount of time. Journal of Logic and Computation, 11, 25–40.  https://doi.org/10.1093/logcom/11.1.25.CrossRefGoogle Scholar
  44. 44.
    Löwe, B., & Welch, P.D. (2001). Set-theoretic absoluteness and the revision theory of truth. Studia Logica, 68(1), 21–41.  https://doi.org/10.1023/A:1011946004905.CrossRefGoogle Scholar
  45. 45.
    Martin, D.A. (1997). Revision and its rivals. Philosophical Issues, 8, 407–418.  https://doi.org/10.2307/1523020.CrossRefGoogle Scholar
  46. 46.
    Martin, R.L., & Woodruff, P.W. (1982). On representing ‘true-in-L’ in L. Philosophia, 11, 61–102.  https://doi.org/10.1007/BF02379018.Google Scholar
  47. 47.
    Martinez, M. (2001). Some closure properties of finite definitions. Studia Logica, 68, 43–68.  https://doi.org/10.1023/A:1011998021743.CrossRefGoogle Scholar
  48. 48.
    McGee, V. (1997). Revision. Philosophical Issues, 8, 387–406.  https://doi.org/10.2307/1523019.CrossRefGoogle Scholar
  49. 49.
    Orilia, F. (2000). Meaning and circular definitions. Journal of Philosophical Logic, 29(2), 155–169.  https://doi.org/10.1023/A:1004775802643.CrossRefGoogle Scholar
  50. 50.
    Orilia, F. (2000). Property theory and the revision theory of definitions. Journal of Symbolic Logic, 65, 212–246.  https://doi.org/10.2307/2586533.CrossRefGoogle Scholar
  51. 51.
    Orilia, F., & Varzi, A.C. (1998). A note on analysis and circular definitions. Grazer Philosophische Studien, 54, 107–113.  https://doi.org/10.5840/gps19985428.CrossRefGoogle Scholar
  52. 52.
    Rivello, E. (2015). Cofinally invariant sequences and revision. Studia Logica, 103(3), 599–622.  https://doi.org/10.1007/s11225-014-9581-0.CrossRefGoogle Scholar
  53. 53.
    Rivello, E. (2015). Periodicity and reflexivity in revision sequences. Studia Logica, 103(6), 1279–1302.  https://doi.org/10.1007/s11225-015-9619-y.CrossRefGoogle Scholar
  54. 54.
    Shapiro, L. (2006). The rationale behind revision-rule semantics. Philosophical Studies, 129(3), 477–515.  https://doi.org/10.1007/s11098-004-2497-1.CrossRefGoogle Scholar
  55. 55.
    Standefer, S. (2015). Solovay-type theorems for circular definitions. Review of Symbolic Logic, 8, 467–487.  https://doi.org/10.1017/S1755020314000458.CrossRefGoogle Scholar
  56. 56.
    Standefer, S. (2016). Contraction and revision. Australasian Journal of Logic, 13(3), 58–77.  https://doi.org/10.26686/ajl.v13i3.3935.CrossRefGoogle Scholar
  57. 57.
    Standefer, S. (2018). Proof theory for functional modal logic. Studia Logica, 106, 49–84.  https://doi.org/10.1007/s11225-017-9725-0.CrossRefGoogle Scholar
  58. 58.
    Visser, A. (1984). Four valued semantics and the liar. Journal of Philosophical Logic, 13(2), 181–212.  https://doi.org/10.1007/BF00453021.CrossRefGoogle Scholar
  59. 59.
    Visser, A. (2004). Semantics and the liar paradox. In Gabbay, D., & Guenther, F. (Eds.) Handbook of philosophical logic. 2nd edn., (Vol. 11 pp. 149–240). Springer.Google Scholar
  60. 60.
    Wang, W. (2011). Theories of abstract objects without ad hoc restriction. Erkenntnis, 74(1), 1–15.  https://doi.org/10.1007/s10670-010-9260-0.CrossRefGoogle Scholar
  61. 61.
    Welch, P.D. (2000). Eventually infinite time Turing machine degrees: infinite time decidable reals. The Journal of Symbolic Logic, 65, 1193–1203.  https://doi.org/10.2307/2586695.CrossRefGoogle Scholar
  62. 62.
    Welch, P.D. (2000). The length of infinite time Turing machine computations. Bulletin of the London Mathematical Society, 32, 129–136.  https://doi.org/10.1112/S0024609399006657.CrossRefGoogle Scholar
  63. 63.
    Welch, P.D. (2001). On Gupta-Belnap revision theories of truth, Kripkean fixed points, and the next stable set. Bulletin of Symbolic Logic, 7, 345–360.  https://doi.org/10.2307/2687753.CrossRefGoogle Scholar
  64. 64.
    Welch, P.D. (2003). On revision operators. Journal of Symbolic Logic, 68, 689–711.  https://doi.org/10.2178/jsl/1052669071.CrossRefGoogle Scholar
  65. 65.
    Welch, P.D. (2008). Ultimate truth Vis-À-Vis stable truth. Review of Symbolic Logic, 1, 126–142.  https://doi.org/10.1017/S1755020308080118.CrossRefGoogle Scholar
  66. 66.
    Welch, P.D. (2009). Games for truth. Bulletin of Symbolic Logic, 15, 410–427.  https://doi.org/10.2178/bsl/1255526080.CrossRefGoogle Scholar
  67. 67.
    Welch, P.D. (2011). Weak systems of determinacy and arithmetical quasi-inductive definitions. Journal of Symbolic Logic, 76, 418–436.  https://doi.org/10.2178/jsl/1305810756.CrossRefGoogle Scholar
  68. 68.
    Welch, P.D. (2014). Some observations on truth hierarchies. Review of Symbolic Logic, 7, 1–30.  https://doi.org/10.1017/S1755020313000361.CrossRefGoogle Scholar
  69. 69.
    Wintein, S. (2014). Alternative ways for truth to behave when there’s no vicious reference. Journal of Philosophical Logic, 43(4), 665–690.  https://doi.org/10.1007/s10992-013-9285-3.CrossRefGoogle Scholar
  70. 70.
    Yaqub, A.M. (1993). The liar speaks the truth. A defense of the revision theory of truth. London: Oxford University Press.Google Scholar
  71. 71.
    Zardini, E. (2011). Truth without contra(di)ction. Review of Symbolic Logic, 4(4), 498–535.  https://doi.org/10.1017/S1755020311000177.CrossRefGoogle Scholar
  72. 72.
    Zardini, E. (2014). Naive truth and naive logical properties. Review of Symbolic Logic, 7(2), 351–384.  https://doi.org/10.1017/S1755020314000045.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Dipartimento di Lettere e FilosofiaUniversità degli Studi di FirenzeFirenzeItaly
  2. 2.School of Historical and Philosophical StudiesThe University of MelbourneParkvilleAustralia

Personalised recommendations